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Abstract

Modelling financial interconnections and forecasting exte losses are crucial for risk manage-
ment in financial markets. This thesis studies multivarregie spillovers at the high-dimensional
market network level, as well as univariate extreme risk efloty at the asset level. The first
chapter proposes a novel time series econometric methoecésure high-dimensional directed
and weighted market network structures. Direct and smlieffects at different horizons, be-
tween nodes and between groups, are measured in a unifieeMicakn Using a similar network
measurement framework, the second chapter investigaa®ldtionship between stock illiquid-
ity spillovers and the cross-section of expected returrismdi that central industries in illiquidity
transmission networks earn higher average stock returnsr{d 4% per year) than other indus-
tries. The third chapter proposes a new Dynamic Stable GARC#emahich involves the use
of stable distribution with time-dependent tail parametier model and forecast tail risks in an
extremely high volatility environment. We can differetéiaextreme risks from normal market

fluctuations with this model.



La modélisation des interconnexions financiéres et la pi@vides pertes extrémes sont es-
sentielles pour la gestion des risques sur les marchés faman€ette thése étudie les retombées
multivariées du risque & des niveaux de réseau de marchéedimension, ainsi que la modéli-
sation de risque extréme univariée au niveau des actifsremipr chapitre propose une nouvelle
méthode économétrique en série temporelle pour mesurestrigstures de réseaux de marché
dirigées et pondérées de grande dimension. Les effetdglieeéindirects a différents horizons,
entre nuds et entre groupes, sont mesurés dans un cadre @mfigilisant un cadre de mesure
de réseau semblable, le deuxiéme chapitre étudie la nrelative les retombées de l'illiquidité des
actions et la section transversale des rendements attedelgenstate que les industries centrales
des réseaux de transmission d’illiquidité gagnent un revaie moyen plus élevé (environ 4% par
an) par rapport aux autres industries. Le troisieme chapimpose un nouveau modele GARCH
Dynamic Stable qui implique l'utilisation d’'une distribah stable avec des parametres de queue
dépendant du temps pour modéliser et prévoir les risquesieeeqdans un environnement de
volatilité extrémement élevée. Nous pouvons différenl@srrisques extrémes des fluctuations

normales du marché par ce modéle.
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Introduction

Since the financial crisis of 2007-09, academic researdmdinancial regulators have a grow-
ing interest in investigating interconnections in finahamarkets and in revisiting extreme losses
prediction methods. This thesis is composed by three papetstudies both multivariate risk
spillovers at the high-dimensional market network level anivariate extreme risk modelling at
the asset level.

Financial market components (markets, banks, produatg, ate connected with each other,
and these interconnections can be represented by finaetmdrk structures. However, many net-
work structures are latent and not readily available inlolgas. For instance, the relationships be-
tween entities (e.g., detailed information on intra-bas&ed and liability exposures) in a financial
network are usually unknown. To empirically study a marlettvork from financial data, we need
an econometric measurement framework to identify and d¢fyathie underlying network struc-
ture. Chapter 1 proposes a novel network econometric maasatdramework to better measure
directed and weighted network structures using finanaiaé tseries data in a high-dimensional
context. Direct and spillover effects, between nodes ahald®En groups, are measured in a unified
framework. Causality at different horizons in the networkisasured through a causality measure
at different horizons. With this framework at hand, We pd&vour estimated market networks
with new econometric connectedness measures. The mastetrsy risk that is quantified by our
connectedness measures has an intrinsic network found&te investigate the S&P 100 implied
volatility network in the US stock market to illustrate theefulness of our method in network
analysis. We find that 7 out of the 10 most influential firms ia 8&P 100 belong to the finan-
cial sector. Top investment banks (Morgan Stanley, Gold8arhs and Bank of America) have
the greatest influence in the financial sector. Market caedeess is especially strong during the

recent global financial crisis, and this is mainly due to tlghltonnectedness within the financial



sector and the spillovers from the financial sector to otbetass.

In Chapter 2, | estimate the illiquidity interconnectionsarg different industries in the US
stock markets and investigate the relationship betweerk siaquidity spillovers and the cross-
section of expected returns. | study industry-level ilidity spillovers in a directed network that
describes the interconnections among stocks’ bid-askadpravhere the interconnections are la-
tent and are estimated by a Granger-type measure. In thetetirdliquidity transmission network,
the illiquidity of high sensitive centrality (SC) industsigi.e., those active at receiving illiquidity
from others, as well as high influential centrality (IC) intties, i.e., those active at transferring
illiquidity to others, tends to covary with that of their gabours and neighbours’ neighbours
across different horizons due to illiquidity spilloverss A result, long run returns of the portfolios
that contain stocks of central (high SC or high IC) industnesy be more volatile because of
weak diversification of the liquidity risk across differdmirizons. Thus, investors would require
compensations for holding these central stocks. | confiismdbnjecture and find that central in-
dustries in illiquidity transmission networks do earn teglaverage stock returns (around 4% per
year) than other industries. Market-beta, size, book-toket, momentum, liquidity and idiosyn-
cratic volatility effects cannot account for the high aggaeturn earned by central industries.

Chapter 3 studies extreme risk measurement and predictiaimfeariate time series. | pro-
pose a new Dynamic Stable GARCH model, which involves the usstadifie distribution with
time-dependent tail parameters to model and forecastis&s m an extremely high volatility en-
vironment. We can differentiate extreme risks from normaktket fluctuations with this model.
Asymptotic inference methods in high volatility environnmteare unreliable, as standard regularity
conditions may not apply or may hold only weakly. | apply a Mogarlo test inference proce-
dure to construct the confidence interval of the tail parameEmpirical analysis on the Nikkei
225 index shows that the Dynamic Stable GARCH model providedb#st in-sample and out-
of-sample one-day Value-at-Risk fittings and forecastsvatiseabove 99% across different model

specifications.



Chapter 1

Multiple Horizon Causality in Network
Analysis: Measuring Volatility

Interconnections in Financial Markets

Abstract

Existing literature does not provide economic and financ&tivorks with a unified measure to
estimate network spillovers for empirical studies. In tbégper, we propose a novel time series
econometric method to measure high-dimensional direateldwaeighted market network struc-
tures. Direct and spillover effects at different horizobstween nodes and between groups, are
measured in a unified framework. We infer causality effentthe network through a causality
measure based on flexible VAR models specified by the LASS@app. (Non-sparse) network
structures can be estimated from a sparse set of model p@@sm&o summarize complex esti-
mated network structures, we also proposed three conmexdedneasures that fully exploit the
flexibility of our network measurement method. We apply oppr@ach to investigate the daily
implied volatility interconnections among the S&P 100 &®over the period of 2000 - 2015 as
well as its subperiods. We find that 7 out of the 10 most infiaéfitms in the S&P 100 belong to
the financial sector. Top investment banks (Morgan Sta@eygdman Sachs and Bank of Amer-

ica) have the greatest influence in the financial sector. Mtaxdnnectedness was especially strong
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during the recent global financial crisis, and this is maihle to the high connectedness within

the financial sector and the spillovers from the financial@eo other sectors.

1.1 Introduction

Since the financial crisis of 2007-09, academic researdmdinancial regulators have a grow-
ing interest in investigating interconnections in finahaomarkets. Network models have become
increasingly popular to study economic interdependencedking into the market architecture.
Allen and Babus (2008) provide a survey showing a wide ranggplications of network analysis
in economics and finance. For example, bankruptcy contagaatility spillovers, risk propaga-
tion and amplification can all be studied in economic and firmetwork frameworks. As
Andersen, Bollerslev, Christoffersen and Diebold (2012) ten modern network theory can
provide a unified framework for systemic risk measures.

In macroeconomics, theoretical literature usually takesket structures as given, and then
studies the roles of market architecture in the relatignbleitween idiosyncratic risk and market-
wide risk. In finance, economic links between firms may sesv/éha channel of gradual infor-
mation diffusion. Individual firm’s returns, return voliéties and credit spreads can be predicted
via firms’ linkages, while these empirical studies requdtentification of the underlying network
structures, such as those from the Input-Output SurveyseoBureau of Economic Analysis, the
reported consumer-supplier relationships by public lessrenterprises or the international trade
flows data from the International Monetary Fund (IMF) Diientof Trade Statistic3. In fact,
many network structures are latent and not readily avaleddlatabases. For instance, the relation-
ships between entities (e.g., detailed information oraib@nk asset and liability exposures) in a
financial network are usually unknown. To empirically stadyarket network from financial data,
we need an econometric measurement framework to identthygaantify the underlying network

structure. A growing econometric literature is respondimghis demand. Perhaps surprisingly,

1See Buraschi and Porchia (2012), Elliott, Golub and Jack&0m4), Acemoglu, Ozdaglar and Tahbaz-Salehi
(2015a), Acemoglu, Akcigit and Kerr (2015c¢) and Acemoglad@glar and Tahbaz-Salehi (2015b) among others.

2See Cohen and Frazzini (2008),Hertzel, Li, Officer and Rm&ig2008), Menzly and Ozbas (2010), Aobdia,
Caskey and Ozel (2014), Gencay, Signori, Xue, Yu and Zhadg5R Albuquerque, Ramadorai and Watugala (2015)
and Gencay, Yu and Zhang (2016) among others.

3See Billio, Getmansky, Lo and Pelizzon (2012), Hautscha8aofburg and Schienle (2015), Diebold and Yilmaz
(2014), Demirer, Diebold, Liu and Yilmaz (2015), Bianchilli® and Casarin (2015), Barigozzi and Brownlees (2016)
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however, none of the studies appear to provide a satisfatdot to measure high-dimensional
market networks for general empirical purposes.

In this paper, we propose a novel network econometric measemt framework to better
measure directed and weighted network structures usingdiaatime series data in a high-
dimensional context. Direct and spillover effects, betwaedes and between groups, are mea-
sured in a unified framework. Causality at different horizonthe network is measured through
a causality measure at different horizons. With this fraowat hand, we provide estimated
market networks with new econometric connectedness messline market systemic risk that is
guantified by our connectedness measures has an intrirtgionkfoundation.

More concretely, we apply the short run and long run Grangasality measurésas the basic
econometric framework to quantify the strengths of dirdadges in a market network. We go
beyond the simple Granger noncausality testing, i.e. wdredh edge exists between two nodes,
but explicitly measure the degree of the multiple horizonsadity to obtain the strength of inter-
connections between two sets of nodes. Following DufourTaaanouti (2010), we estimate the
multiple horizon causality in the Vector Autoregressivedalo(VAR) settings. To overcome high-
dimensionality problems in estimation, we use and extead.#ast Absolute Shrinkage and Selec-
tion Operator (LASSO) techniques in the VAR estimationsiclwtare similar to those developed
by Barigozzi and Brownlees (2014) and Barigozzi and Brownle@3g® Actually, (non-sparse)
network structures, which are measured by our causalitysurea table, can be estimated from a
sparse set of autoregressive coefficients and errors cwatien matrices. Under mild conditions,
we prove the asymptotic consistency of the estimators oflmacted and weighted edge measures.

Our network measurement method has the following 7 appgédistures:

1. The network edges we measure are directed. Allowing téidecetwork structures provides
us with important insights into the direction of networklkpiers, since spillovers and rela-

tionships in economic and financial networks are generalyranetric.

2. The network edges we measure are weighted. We do not meeeltyfy the edges between

two sets of nodes, but explicitly quantify their economiesgths.

and Giudici and Spelta (2016) among others.
4See Dufour and Renault (1998), Dufour, Pelletier and Rera006) and Dufour and Taamouti (2010).
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3. In contrast to correlation-based measures, the direzdges we measure have causality
implications. This is an important feature for theory veafions, model predictions and

policy making.

4. Spillovers at different horizons in an economic netwaak be identified and measured by
analyzing causality measures at different horizons. Thigéipleihorizon causality measures

gauge the net effects while simultaneously taking diredtiadirect effects into account.

5. Our network measurement method overcomes the high-giovaadity problems in estima-
tions. Note that economic and financial network theoriealhgstudy the cases in which
the size (number of nodes) of a network is large or even goad¥itoty (see, e.g., Ace-
moglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012), EBioal. (2014) and Acemoglu et
al. (2015b)).

6. Our network measures provide underlying market netwatlctires with clear graphical
representations. Eichler (2007) shows that the multiplezbo causality in Dufour and
Renault (1998), the base of the multiple horizon causalitgsuees, is well matched to path
diagrams in the multivariate time series context. Thus @inwork measurement framework

is also consistent with the network analysis in graph theory

7. Point-wise edgesj  j), as well as group-wise edge$§i,(io, ...,in] — [j1,]2,---, jm]), Can
be simultaneously analyzed by our unified network econam&amework. In empirical
applications, for example, we can not only measure theioalstiip between firms, but also
measure the relationship between seétbisthe same data observations at firm level and

the same type of econometric measures.

We argue that a satisfactory econometric framework foryshgdmarket networks should at
least satisfy Features 1 - 5: the network measurement mstimad be able to estimate directed
and weighted network structures with causality implicasicand it can be applied to study network
spillover effects in a high-dimensional context. Featuin@ Feature 7 are the extra advantages

of our network measurement method. Moreover, Feature 7Agesws with a new angle to study

5A sector can be viewed as a group of firms.
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market network connectedness. Itis intuitive to decompameket connectedness by the intercon-
nections between different sectors and the connectedrigs wach sector. This decomposition
is straightforward for economic and financial network asely However, the group-wise edges
measurement method for measuring sectors’ interconmectiomissing in existing econometric
literature. Our network measurement method can exactlhidiblank with our Feature 7.

Considering the economy of interest, which is modelled by &ketaetwork, as aN-dimensional
Euclidean space, we use the causality measures table tol@ittxe coordinates of each firm’s lo-
cation in the multi-dimensional economic space. The imenectedness of a firm to the network
can be characterized by the firm’s location in the economacep Total market connectedness
is measured by the mean of the interconnectedness mea$@ashdirm to the economic space.
Similar to Billio et al. (2012) and Diebold and Yilmaz (2014yr market connectedness measures
are built on underlying market network structures, and timesmarket systemic risk quantified
by these measures has a market network foundation. Sincecaoraic network can be viewed
as a network connected by firms (firm-wise market), whosedotenections are measured by our
point-wise edges method-{ j), or a network connected by sectors (sector-wise markétpses
interconnections are measured by our group-wise edgethéihio, ...,in] — [j1, j2, ..., jm]), we
have three types of connectedness measures to gauge netteocknnections: i) firm-wise con-
nectedness, which measures the interconnectedness ofaiaimarket; ii) firm-wise connect-
edness within a sector, which measures the interconnexgsavithin a given sector in a firm-wise
market; and iii) sector-wise connectedness, which meadhes interconnectedness of a sector-
wise market. These three types of connectedness measliyesife advantage of the flexibility
of our network measurement method, so they can be appligddy snarket network connected-
ness in more flexible ways than those connectedness measapesed by Billio et al. (2012) and
Diebold and Yilmaz (2014).

Our network measurement methods have a wide range of appfisaand can be applied in
a variety of research areas, including identifying and gfiang economic relationships between
firms, between sectors and between areas; measuring marketatedness; predicting financial
risks; guiding asset allocations in large portfolios; ekote that many latent economic and fi-
nancial network structures can be estimated by our flexibtevark measurement method with

varieties of panel databases, and observing that exgl@ittified economic network centrality and
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consumer-supplier linkage have been shown to be new rigkr&ao asset pricing and new de-
terminants to predict financial variables, e.g., stockrretreturn volatility, and credit spre&dwe
expect more pricing factors and financial and macroeconwarmiables drivers are to be discovered
by network econometric measurement methbds.

To illustrate the usefulness of our method in network anglyse investigate the S&P 100
implied volatility network in the US stock market. Volatilinetwork in financial markets has been
studied in Diebold and Yilmaz (2014), Demirer et al. (2018)l 8arigozzi and Brownlees (2016),
but they mainly focus on realized volatility. For financiahptitioners, the VIX index, calculated
from the implied volatilities of S&P 500 index option contta, is the most popular volatility
measure to gauge market turbulences, and it is also knowriraaret fear” index. Our implied
volatility network among the S&P 100 stodksan thus be naturally viewed as an “individual fear”
network. To the best of our knowledge, implied volatilitytwerk has not yet been studied in the
financial literature.

We first look at the static network with the full sample (2002015). We identify the most
influential firms in the firm-wise market network, the mostuefhtial firms in the financial sec-
tor, and the most influential sectors in the sector-wise etamktwork. Using rolling subsamples,
we estimate the time-varying firm-wise market connecteslibe$ore, during and after the recent
financial crisis of 2007-09, and compare it with the dynanattgrns of the firm-wise connected-
ness within each sector and the sector-wise connectedmesyalifferent sectors. In particular,
we also examine the dynamic interconnections between thedial sector and other sectors.

We find that: i) 7 out of the 10 most influential firms in the S&FOlfelong to the financial
sector, and top investment banks (Morgan Stanley, Goldna@hsSand Bank of America) have
the greatest influence in the financial sector; ii) markeheatedness was especially strong during
the recent global financial crisis; iii) the high market centedness was mainly due to the high
connectedness within the financial sector and the spilkofrem the financial sector to other sec-

tors; iv) the financial sector had the highest firm-wise cate@ness from 2008 to 2010, while the

6See Cohen and Frazzini (2008), Hertzel et al. (2008), Meaaty Ozbas (2010), Ahern (2013), Aobdia et al.
(2014), Gengay et al. (2015) and Gengay et al. (2016).

"For example, Jian (2016) uses a Granger-type method tdfigithne illigiudity network in stock markets and finds
centralities in illiquidity networks are priced in the csesection of expected returns.

8To be included in the S&P 100, the companies should be amenigtiyer and more stable companies in the S&P
500, andmust have list options
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connectedness of other sectors also reaches relativélyevgl during this period; v) the causality

effects between the financial sector and other sectors veyraraetric and displayed consider-

able variation over time, which stresses the importanceretted and weighted edges settings in
market network analysis.

This paper is motivated by the econometric literatures eratralysis of financial networks and
contributes to different strands of literature. The togdithis paper is related to recent econometric
literature on financial networks (see Billio et al. (2012)ebBold and Yilmaz (2014), Demirer et
al. (2015), Bianchi et al. (2015), Barigozzi and Brownlees @0Hautsch et al. (2015), Aheleg-
bey, Billio and Casarin (2015), and Giudici and Spelta (2016pag others). We differ from the
social network econometrics literature, e.g., Bramoullgbbari and Fortin (2009), in the sense
that the nodes in our network setting are represented bys@nes financial variables (e.g., return
and volatility). The most closely related econometricratere to this paper includes: Billio et al.
(2012), Diebold and Yilmaz (2014), Demirer et al. (2015) &atigozzi and Brownlees (2016).
Billio et al. (2012) detect the edge of a pair of nodes via tggbhilateral Granger noncausality
without taking into account other nodes in the network, dngstmay find misleading “spurious”
causality edges and tend to overestimate the number ofgeskeDiebold and Yilmaz (2014) and
Demirer et al. (2015) overcome the spurious relation problé’hey measure the directed and
weighted network structure by generalized forecast eraoiamce decompositions in a VAR rep-
resentation. The generalized forecast error variancendegsition technique is closely related to
our multiple horizon causality measures. Unfortunateligdold and Yilmaz (2014) neglect the
high-dimensionality problem in their study, Demirer et @015) fail to provide the theoretical
validity for their estimations and they both require thejdbaussian innovation assumption in the
econometrics model. These drawbacks inevitably limitrtapplications in market network anal-
ysis for general purposes. The time series network estomagttings in Barigozzi and Brownlees
(2016) are similar to what we apply in this paper. Yet, thatwork structure is assumed to be
sparse and their edges, measured by long run partial cihooredaare basically undirected. Among
recent literaturg only the empirical model proposed in Demirer et al. (20E53ble to study a
high-dimensional directed and weighted network structarel none of them is able to estimate

point-wise edges and group-wise edges in a unified framework

9Ahelegbey (2015) provides a recent review on the network@atrics in the context of time series analysis.
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We apply the short run and long run Granger causality measg®ur basic network econo-
metric measurement framework. The concept of the nondaussdting introduced by Granger
(1969) and Sims (1972) has been widely used to study dynaatsitanships between time series
in economics and finance. Dufour and Renault (1998) and Dwdbat. (2006) extend this no-
tion to multiple horizon cases to study indirect causalffgas. Eichler (2007) connects the short
run and long run Granger causality with path diagram in maitiate time series analysis. Based
on Geweke (1982), Dufour and Renault (1998) and Dufour et2@l0§), Dufour and Taamouti
(2010) propose the multiple causality measures to quatitéycausality at any forecast horizon
h > 1. Dufour, Garcia and Taamouti (2012) apply this tool in gtng the relationship among re-
turns, realized volatility and implied volatility. Dufoand Zhang (2015) further study the multiple
horizons second-order causality. In this paper, we showntiaaket networks, with directed and
weighted edges, can be modelled and measured by the wellegi@d econometrics framework of
the multiple horizon causality measures. Moreover, unikdour and Taamouti (2010) and Du-
four et al. (2012) who only deal with low-dimensional siinas, we estimate the multiple horizon
causality measures with the LASSO approach to better fit thipte horizon causality measure
framework into high-dimensional network analysis.

One of the motivations of this paper, identifying and quignmp the degree of interconnections
between nodes and between groups in market networks, ista@pra new way to measure market-
based systemic risk. Similar to Billio et al. (2012) and Dikeband Yilmaz (2014), our market
connectedness measures are also built upon the underlyingnk structure and contribute to the
strand of literature on market-based systemic risk measeme(see Acharya, Pedersen, Philippon
and Richardson (2010), Brownlees and Engle (2015), AdriaBBamanermeier (2011), Billio et al.
(2012), Diebold and Yilmaz (2014), Hautsch et al. (2015) Bedhirer et al. (2015) among others).
Benoit, Colliard, Hurlin and Perignon (2015) provide a conmergsive survey on measurement
methods for systemic risk.

Our key contribution is that we propose a novel time seriesemetrics network measurement
framework, which can be applied to measure high-dimensdinected and weighted market net-
work structures, without sparsity assumptions on netwtnkctures or the Gaussian assumption
on econometric models. We successfully connect the céybtdrature with the LASSO approach

in application to network measurement. Moreover, to theé besur knowledge, our economet-
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ric framework is the first one in the network econometricréteare to explicitly allow point-wise
edges and group-wise edges to be measured in a unified frakiewo

The rest of this paper is organized as follows. In sectione2provide a brief description of
general directed and weighted network structures and sidihe criteria of a satisfactory network
econometric framework in economic and financial networKyasis In section 1.3, we show that
directed and weighted network structures and networkos@ts can be measured by the multiple
horizon causality measures table. In section 1.4, we esditha causality table with the LASSO
approach in a high-dimensional context and provide asymeptonsistency results. In section 1.5,
we propose new market network connectedness measuressfensy measurement. In section
1.6, we investigate the static structure and the time-wgrgharacteristics of the implied volatility

network in the US stock market. Finally, in section 1.7 wevjite a short conclusion.

1.2 General Economic and Financial Network

A network is composed by two basic elements: nodes and edgeancial institutions, for in-
stance, represented by different nodes, are linked throeghkorks of different types of financial
contracts, such as derivatives, credits and securitiegsd lsontracts or business relationships,
between any pair of financial institutions, are represehtetheir edges in the financial network.
While nodes are given and known as they are always referreshte specific institutions, mod-
elling edges is always an elusive part in financial netwoiysis. Edges represent some implicit
economic relationships between nodes. The relationshgmgrfinancial institutions in many cases
are unknown or difficult to specify. When we study the systemsicin a financial network, edges
could be the position of banks’ loans to each other in thdarbze sheets, or whether they hold a
large bilateral position of some securities (e.g., creeliadlt swap (CDS)). Without a prior specific
definition of the systemic risk, which financial contract slibbe selected as the edge to study a
financial network is a difficult decision to make, since Iga@dges and CDS'’s edges are both the-
oretically important but their existences can be indepahddoreover, detailed information of the
financial contracts that financial institutions are holdamgl their counterparties is usually unavail-
able to public. Therefore, what we can measure for the edgesdata is at most a proxy of what

we are interested in. This provides a broad space for ecamiciaas to develop different statisti-
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cal network measures for different research objective® @mhe main aspects of research papers
differing from each other in the financial econometrics reetwliterature is in their rationales of
how to construct a statistical measure to quantify the etdlgasetwork.

Despite it, all networks have basic structures in commoninfpke static network has a math-
ematical notationG = {V,E}, whereV = {1,2,...,N} is the set of nodes arll = {€ : (i, ) €
V x V} is the set of edges. Usually, the size of the netwblkis large. Any pair of nodes i,

(i, ]), may be linked by an edge in the edge &tWhene! = el' is assumed, the network is undi-
rected; otherwise, the network is directedé/lfis assumed to be indexed 9, 1}, the network is
unweighted; ifé!} is continuous with certain degree of strength, the netwerkdighted.

The directed edges setting is crucial in economic and fimhmatwork analysis. Economic
relations are usually directed and the directed structpla@s an important role in network anal-
ysis. For instance, the presence of directed intersectgpat-output linkages can explain why
single idiosyncratic shocks may lead to market-wide aggpeefluctuations (see Acemoglu et al.
(2012)). Economic effects and information flows have dimexs. We use causal relationships to
describe such directed relationships in a economic netwoakisality interpretations are required
for economic networks because it is the foundation for the&erifications, model predictions and
policy makings. Intuitively, if two firms have no businessat®nship, we do not expect there is
a causal relationship between them and vice versa. We nbetirected edges in our network
with arrows, (— j), which indicates causesg. Figure 1.1 shows four simple possible relations
between node A and node B in a unweighted setting. If the gtineof the edgee® = A =0, we
say node A and node B are unlinked (fig. 1.1a); if they are biilen eithee® =1 orePA=1
ore’B=ePA =1 (fig. 1.1b, fig. 1.1c and fig. 1.1d).

The weighted edges setting is also important. Effects incam@mic network are weighted.
In social networks, knowing how well agents know each otli®emrmuch more informative than
merely knowing whether they know each others, since thegimity of information transmissions
is highly correlated with their familiarity. In financial tveorks, when we say a bank is “too big to
fail”, it implies that this bank has “big” impacts on othei/hen studying shock propagations or
risk amplifications in a market network, we would be espéciaterested in quantifying spillover
effects. Since spillovers may grow (or disappear) throutdgpes in a network, unweighted edges

setting is not able to model the quantitative change in®g@ll processes. Figure 1.2 shows three
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Figure 1.1: Directions of the edges between node A and node B
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Figure 1.2: Strengths of the edge from node A to node B

possible strengths of edge from node A to node B. The strerfgtieedge could be zero, which
implies there is no relation from node A to node B (see fig. 1.Z&e strength of the edge could
be small and it is represented by a light arrow (see fig. 11Pg)strength of the edge could also
be large and it is represented by a thick arrow (see fig. 1 ¢w.thickness of the edge-G j) is
weighted scaled bg/!.

Economic and financial network literature usually repodme graphs of the network they
study. The graph representation of a static network doesdeais a broad and concise picture
of the underlying network structure. A static network, hger only tells us direct effects. The
indirect effects, a central part in risk spillover analysssnontrivial to be revealed from the direct
effects. For instance, suppose there are relations from Add node B indirectly via two different
paths in an unweighted static network, we may naively sayttigerisk from node A could cascade
to node B. However, it is possible that node A has no effect aler® if the indirect effects
in those two paths are just cancelled out by each other. Henoetwork graph drawn from

a static network structure may mislead us to a wrong impboaabout spillover effects in the
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true economic network. Surprisingly, econometric litaraton financial networks have not yet
realized this important issue. Most of them just focus onnesting static network structures
without directly measuring spillover effects.

In summary, the size of an economic network is usually laspene plausible causality in-
terpretation for nodes’ relationships in an economic nekws desire; a directed and weighted
edges setting is required to uncover the effects in the lyidgreconomic network structures; net-
work spillover effects need to be measured directly. Tlwegfa satisfactory network econometric
framework should be able to estimate directed and weigh&tdork structures with causality

implications, and it can be applied to study spillover effeén a high-dimensional context.

1.3 Multiple Horizon Causality and Networks

In this section, we model a complex network structure by abtysrelations, and apply the short
run and long run Granger causality measures, introduceduigud and Taamouti (2010), to iden-
tify and quantify the edges between two sets of nodes in tlienying network structure. We
demonstrate that the multiple horizon causality meas\atsfg the criteria of a satisfactory net-
work econometric framework. It is able to estimate dire@ed weighted network structures with
causality implications and can be applied to study spili@féects in a high-dimensional context
Moreover, our network measurement framework has some witpartant features.

Suppose we observe a data sample from a jointly strictliostaty procesX = {Xit, Xz, ..., XNt}thl.
N is the number of nodes andis the observable sample size. In context of economic n&twor
analysis, the number of node¥, is large. The process of intereXt, can be divided by three sub-
processes a¥ = {X", X", X?}_y, such that = [Xar, ..., Xmyt], X = Xmyr1)t> s X+ mo)t]
andX? = [X(m1+mz+1)t, ...,X(ml+m2+n,3)t], wheremy, mp, mg > 0 andmy +mp + Mg = N. | denotes
the full information set andl v denotes the full information set without the informatiomgeated
by XW. If we further assume the full information set is generately by X itself, | andl_y can
be denoted byyyzandlyz respectively, wheréyy z(t) denotes the information set generated by
the procesX = {XW, XY, X%} up to timet, andlyz(t) denotes the information set generated by

the sub-procesgX”, X4} up to timet.
Definition 1.3.1. Mean-square Causality Measure at forecast horizmative to an information
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setl

Forh > 1, where by convention (®/0) = 0 and Ir(x/0) = +co for x > 0,

det{ Z[XY (t+h)|l_w) (D]}
det{Z[XY (t +h)[1(t)]}

cL(xW TXYH) :=1In (1.1)

is the mean-square causality measure fiéth to XY (Y = W is allowed) at horizorh, given
information set.
Since we only consider the mean-square measures in this, papwill just call it as short run

and long run Granger causality measures or multiple horczasality measures hereafter.

The multiple horizon causality measui@,(XW - XY|I), gauges the predictive power of
XW to XY conditional onl. We sayX"V causeX" at forecast horizot if and only if X" helps
to predictX” at forecast horizom. The value ofC (XW — XY|I) measures the degree of the
causal effect fronX"W to XY at forecast horizoh. Consequently, the identified edg&/ (- Y),
has causality implications.

There are some important properties of this type of measures

First, generally speaking; (X" — XY 1) # CL(XY — XW|I). The effect fromW to Y is
not presumed to be equal to the effect frfno W. The edges betweall andY, (W — Y) and
(Y — W), are directed.

SecondCy (XW — XY|1) is always nonnegative dg y)(t) C I(t). CL(XW — XY[1) =0 if
and only if there is no causal effect fradV to X” at forecast horizoh. The value ofc (X e
XY |1 is increasingly monotone to the the predictive poweX#fto XY. Thus, the strength of the
edge, W — Y), measured by the value 6f (X" — XY|1), is weighted.

Third, C (XW — XY|I) measures the indirect effect framto'Y at horizorh, while C (XW -
XY 1) measures the direct effect as there is only one step to bédeved. For example, suppose
CL(XW - XY|1) = 0 andCy (XW — XY|I) > 0 for ah > 1, it implies there is no direct effect
from W to Y, but there is an indirect effect frolV to Y via other node(s) in the network. The
spillover effect fromW to Y at any steph can thus be directly measured Gy(XW - XY|1).

Fourth, the dimensions ofW and XY are arbitrary. To measure the edge frévnto Y, we
only require the dimensions of the proces¥®§andXY, m; andmy, such thatm,m, > 1 and

my +my < N. We can leW andY represent a single node or a set of nodes. The point-wisesgdge
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whereXV andX" are univariate variablesng = mp = 1), and the group-wise edges, whx& and

XY are multivariate variablesrg, m, > 1), can be analysed in this unified econometric framework.
For instance, we can not only measure the edges between firmsafse edges), wherg" and

XY represent firms, but also measure the edges between seetctar{wise edges), whex¢’ and

XY represent sectors ama, andmy, are the number of firms in the sectors. Therefore, we can use
the same data observations at firm’s level and the same typeoolometric measures defined in
Definition 1.3.1 to study firm-wise edges and sector-wiseesdlg a unified framework. In the past,
weighted aggregation is usually required if we want to stilebysector-wise spillover effect with
firm-wise data. However, it would inevitably come to a coslasfing information in firm-wise

interconnections. The econometrics approach proposéikipaper overcomes this limitation.

Remark 1.3.2. If XW andX" are univariate processes denotedXbpndX; respectively, then for
h>1

CL(X —— Xi[1) :=1In (1.2)

o?[Xj(t+h)[1(t)]

o?[X; (t+h)||(—i)(t)]] ‘

The variances of the forecast errorsXgft + h), o2[X;(t + h)|l_;(t)] ando?[X;(t + h)[1(t)],
are both positive, and?[X;(t + h)|I_j,(t)] > a?[X;(t+h)[1(t)]. a?[X;(t+h)[I _i)(t)] = o[X;(t+
h)|I (t)] if the information generated by nodéoes not help to decrease the forecast error variance
of nodej. CL(% e X;|l) measures the causality strength from node nodej. For notation
convenience, we hereafter @q =CL(X - Xj|l) andGjj := C,ll

For any given forecast horizdn> 1, we have the multiple horizon causality measures for each
pair of nodes in a network as Table 1.1 shows. Point-wisesufgthe network are measured by
the values o€},
structure. Théth row andjth column element in Table 1.1 is the strength of the direethgke from

i=1,..,Nandj=1,...,N. Table 1.1 is exactly corresponding to a static network

nodei to nodej. Cjj measures the direct effect from noid® nodej: S(i — j), whereS(i — j)
denote the effect from nod¢o nodej via the pathi(— j). Forh > 1,0,*} measures the total indirect
effect from node to nodej via every possible path with length S(i — k; — ko — ... = kn_1 —

j) foranyk eV,i=1,...h—1, whereS(i — k; — ko — ... — k,_1 — J) denote the indirect effect
from nodei to nodej via the path(i — k; — ko — ... — ky_1 — j). In other wordscﬂ measures
the indirect effect from nodeto nodej with taking into account all the interconnections in the

network. Intuitively, the forecast horizdncan be interpreted as the effect-radius when considering
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Table 1.1: Causality table (given forecast horizgn

nodes 1 2 ... i . ] . N
1 Cg | CEZ . CEi ... ng . CEN
2 Car Cpp - G - G o Gy
! ch Ch ch Cik} ch
i Ch Ch Cj Cl Cl
N Qi R i Q) Cln

the effect between any pair of nodes. For example, wheril, we only measure the direct effect
(1-step effect); whei = 100, the effect between any pair of nodes could “walk” via aynas
99 different other nodes in the netwotk.Another way to understand the difference betw@én
andCﬂ (h > 1) is to consider the difference among standard networkrakiygt measures (e.g.,
Degree, Closeness, Betweenness and Eigenvector). Thesalibemieasures differ from each
others mainly in how to weight the importance of the nodes @ahaode connected to to measure
this node’s importance in the network. For instance, thee@egentrality only calculate how
many nodes that a node directly connected to to charactémzenode’s importance, while the
eigenvector centrality assigns relative scores to all aadethe network based on the concept
that connections to high-scoring nodes contribute moréecstore of the node in question than
equal connections to low-scoring nodes, thus the degreteatignis a “local” measure, and the
eigenvector centrality is a “global” measure. Similaﬂg}j, is 1-step locally measuring the direct
effect, anoC{} is h-steps globally measuring the indirect effect.

In terms of mathematical definitions, group-wise edges lagegeneralization of point-wise
edges. They are equivalent when the sizes of the groups &qu&lor any pair of nodes,

and j, in a node seV, we sayi ot j if and only if Cﬂ- = 0. For any pair of groups of nodes

10The forecast time horizon and the length of path are equitifleve assume that direct effects take and only take
an unit of time to happen. If A does not affect B at horizon onedan affect B at horizoN, which is greater than
one, this implies A affects some other nodes at horizon odetlaan affects B directly. This is also implied by the
VAR specification using in this paper. Without the above agstion, the length of path depends on the time scale we
use to define time horizon. 1-step in path could represendap®r two days.
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(i1,...,in;) @nd (j1,..., jn,), Where(i1,...;in;) = (j1,---, Jny) OF (i1,...,in;) N (j1,---5 jn,) = O for
(i1, --sing), (J1s-- Jnp) CV, we say(ia,...,in,) 5?1 (j1,--- jn,) if and only if Cll,, = 0, wherew =
(i1, ...,ing) @ndY = (j1,..., jny)-

Remark 1.3.3. Let V1 = (i1, ...,in,) @andVa = (j1,..., jn,). FOr anyi € V; andj € V,, because of
| v, C 1, Cy, = 0 [(i1,.-siny) = (j1,---, jnp)] implies Cf, = O [i = (i1, Jny)], @ndCy ; = 0
[(i1.-w-iny) 22 ] implies ] :O[i’EZZ i ’

Remark 1.3.3 says if a set of node(s) has no effect on someraitle(s), any element of this set
of node(s) also has no effect on those node(s). It is wortmiohasize here thélq-'} =0]i 6'71 j] for
anyi € Vy and for anyj € V, does NOT necessarily imp(j}lV2 =0/[(i1,...,in,) 871 (1, Jny)]- In
other words, the strength ofi[ j) a: k] may be strong even if the strengths bét K] and [j c_r: K]
are weak. This circumstance is analogous to the differesb@den pairwise independence and
mutually independence. Whef andX; are contemporaneously highly correlat¥gs marginal
effect onX,, conditional onX;j, will be very small since all relevant information ¥ that helps to
predictXy has been captured b.

In fact, studying the role of a group of nodes in a network israportant topic. In social
network literature, for instance, just as looking into wikdahe center node in a network, which
can be measured by standard centrality meast(sse, e.g., Freeman (1978) and Jackson et al.
(2008)), we also may want to find which group of nodes is cantametwork, which can be mea-
sured by the generalizations of the standard centralitysorea (see Everett and Borgatti (1999)).
From measurement perspective, the importance of a groupds(s) has to be based on the in-
terconnections of this group to other nodes in the netwankl @l other interconnections in the
network). To the best of our knowledge, surprisingly, meiasuthe effects of a group of nodes
on other nodes in a network is still missing in the networkrexoetric literature. Our network
measurement method can exactly fill this blank. Moreover,graup-wise edges measurement
method is compatible with the classic network literaturemek 1.3.3 suggests our generation
of pair-wise edges by group-wise edges is in line with theegation of the node centralities in
Freeman (1978) by the group centralities in Everett and Bord®99).

From the discussion in this section, we have seen that thepeuhorizon measures in Def-

inition 1.3.1 have causality implications for the edges @asures. It is also sufficiently flexible

n network theory indicators of centrality identify the mi@mportant vertices within a graph.
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to be applied to study indirect effects in directed and widmetwork structures. Properties of
network analysis, which can be applied to study complexaatenections in an economic system,
have been studied in mathematics and computer science@stheory. As Eichler (2007) shows,

the multiple horizon causality in Dufour and Renault (1998g base of the multiple horizon

causality measures, is also well matched to path diagrarteimultivariate time series context.
Thus our network measurement framework is also in line withrtetwork analysis in graph the-
ory. Lastly, point-wise edgesi ¢ j), and group-wise edgesii2,...,in] — [J1,]j2,---, Jm]), €an

be analysed by our multiple horizon causality measuresdveaork.

1.4 LASSO Estimation of Causality Measure

In this section, we estimate the multiple horizon causatigasure€, (X" — XY|I) andCp (XW —
XW|1) in a high-dimensional context. Given the network’s nodespesseX = {Xut, Xat, ..., XNt 11

following Dufour and Taamouti (2010) we use the VAR framekvor our econometric analysis.
Network estimation under the VAR representation is defraince the VAR models are natu-
rally developed to investigate the pairwise effect in a clexpfinear structure. Unlike Dufour and
Taamouti (2010) who only deal with low-dimensional sitoas, we estimate the multiple horizon
causality measures with the LASSO approach to better fit thlépte horizon causality measures

framework into high-dimensional network analysis.

Assumption 1.4.1.Processes VAR Representations
The unrestricted proceds= { XV, X, X} = {Xat, Xat, ..., Xnt }1_ 1 is strictly stationary and

has a VAR ) representation,

X(t) = gAkxa—k)w(t), (1.3)
k=1

whereX(t) = [Xit, Xz, ---, Xnt)’ is @N x 1 vector, Ay is N x N matrix andu(t) ~ w.n.(0,%). X is
aN x N positive definite matrix.

The restricted procesg = {X, X?}{_, is strictly stationary and has a VAR) representation,

Xo(t) = 3 Aot —K)+£(t), (1.4)



whereXo(t) = [XY,XZ]" is a(N —my) x 1 vector,A is (N —my) x (N — my) matrix ande(t) ~
w.n.(0,Z¢). Zg isa(N—nmy) x (N —nmy) positive definite matrix.

The restricted process has the following expanded repratseam,

X(t) = 3 APLX(t—K)+v(t) (1.5)
K=
p— _W J— pa—
whereA! = [A_k ] , A is defined in (1.4) and\ is the expanded coefficients faV.
Ax
NX(mel)

J2 = [ON—my)scmy> | (N=my)x (N=my)] (N=my)xn @NAV(t) ~wn.(0,Zy ). Zy is aN x N positive definite

matrix.

Remark 1.4.2. Under the Assumption 1.4.1, the covariance matrix of thedast error at horizon

h for the unrestricted model (1.3) is

h—1
ZXEHDIF0)= 5 9ty (L.6)
q:

wheregq = S, Acdq_k andgo = In. The covariance matrix of the forecast error at horidar

the restricted model (1.4) is

h-1
ZXo(t+h)[F w(t)] = ZO%Ze% 1.7
o=

wheredq = 37, Acbq k anddo = In—m,.

Definition 1.4.3. Under the Assumption 1.4.1 and by the Remark 1.4.2, the nlhprizon

causality measure, frolV to Y, at forecast horizoh is

CLOW XY |1) o In | 9EHIZDXo(t + )| w (1)l o}

h def{ 2 [X(t+h)|.Z# (t)]I;} (1.8)

whereJo = [lmy; Ompxmy]im, s (N—my) @A 1 = [Omyxmys Ims Ompscmg]mp - Z[X(t+h)[.Z ()] and

2[Xo(t+h)|.Z7_w(t)] are defined in (1.6) and (1.7) respectively.

Remark 1.4.4.Under the Assumption 1.4.1, it can be easy to observethatl,>, J;, andXp(t) =
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JoX(t). Then the forecast error covarianceXd¥ at horizonh, without its past information, is
h-1
Sw XY (t+h) .7 w(t)] = s > @i | % (1.9)
q:

wheregy = 58 Al@y i AY = AlJ2, @ =N, 33 = [lmysmys Oy (N—my) I muxN-

Definition 1.4.5. Under the Assumption 1.4.1 and by the Remark 1.4.4, the nhltiprizon

causality measure, frolV to W, at forecast horizoh is

det{Zw[Xo(t +h)|Z_w(t)]}
det{J3Z[X(t +h)|.Z (1)] 5}

cL(xW — XV :=1In (1.10)

whereXy [Xo(t +h)|-Z_w(t)] andZ[X(t + h)|.Z ()] are defined in (1.9) and (1.6) respectively.

In order to obtairC_ (X" — XY|I) andCy (XW — XWI|I), we just need to know the autore-
gressive matricesAq, Ay, ...,An_1] and [Kf,ﬂf,...,ﬂﬁfl], and the contemporaneous covariance
matrices 2, andZ,. To estimate these parameters, we consider the truncatdelsnaf the unre-

stricted process (1.3) and the expanded restricted pr¢tegsas

X(t) = % APX (t —K) + uP(t), (1.11)
k=1

X(t) = % APXo(t —K) + vP(1). (1.12)
k=1

whereuP(t) ~w.n.(0,Z8) andvP(t) ~ w.n.(0,%f). AP andzf areN by N matrices fok = 1,2, .., p.
KE is aN by N —my matrix and=} is aN by N matrix fork = 1,2, .., p.

While the dimensions for two groups in group-wise edge amalys andny, are fixed, we
assume that the number of nod,and the lagp can be functions of (i.e., Ny = O(T%) and
pr = O(T) for constantcy,c, > 0), but for notation simplicity we do not write the subscript
T explicitly. Under mild assumptions in Barigozzi and Browrdg@014), the truncated bias is
asymptotically negligible such thH\f — A/l = 0(1) for k=1,2,...,p and||Z§ — Zy/| = 0(1)
asT — . We can therefore estimate the parameters of interesthattrincated models. Similar
arguments can be applied to the expanded restricted tethoatdel. The unrestricted model and

the expanded restricted model basically share the sanmeatistn procedure.
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The main estimation challenge in a network context is thédignensionality problem. We
haveN x N x p unknown parameters in the autoregressive matm,‘(’eé( =1..0p, as well as
w unknown parameters in the contemporaneous covariancéxntr but we only have
N x T observations. For a market network, the number of nodNesan be large. Traditional
estimation methods are not reliable whérx pis close tol or even infeasible wheN x p > T.
One of the popular ways to solve the high-dimensional prabiestatistics is by assuming sparsity
such that the effective dimension of the parameter spageskegctable. The sparsity assumption
is convenient to estimate high-dimensional networks. Bt thing we need to emphasize here
is that we do not assume the network structure, measurecelwtiftiple horizon causality mea-
sures table, is sparse. Instead, we only need to assumettitegressive matrices, and the error
concentration matrix are sparse. Since the multiple harcausality measures are nonlinear func-
tions of the autoregressive matrices and the concentratairices, the causality table is generally
nonsparse. The estimation technique in this section igatdhe Least Absolute Shrinkage and
Selection Operator (LASSO) (see, e.g., Tibshirani (1996 sparsity assumption helps us esti-
mate high-dimensional network and the empirical conchsia this paper rely on this technical
assumption.

Under sparsity assumptions, the autoregressive coefficgerd the error concentration matri-
ces could be estimated simultaneously (see Barigozzi andrideew (2016)). As the dimension of
the unknown parameter space is huge, however, this estimatocedure could be time intensive.
Note that the multiple horizon causality measures requestsnating as many as + 1 models
(one unrestricted model ardi restricted models) to quantify the effects from one to athdrhe
estimation efficiency, in terms of computational time, iscahn important issue to be concerned
whenN is large.

For empirical convenience, we apply a faster two-stagenesiton procedure. At stage one, we
use the Adaptive LASSO regression (see, e.g., Zou (200@3timate the autoregressive coeffi-
cients. At stage two, the error concentration matrix candtierated by the residuals from the stage
one. It comes a cost that the rate of convergence of the dstimmathe second stage will depend
on the estimator in the first stage (see Barigozzi and Browr{@@k4)), and thus this method is
theoretically less desirable than the joint estimationhoétin Barigozzi and Brownlees (2016).

Nonetheless, we do get interesting results even using &sbimprocedure provided by Barigozzi
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and Brownlees (2014). The investigation utilizing the neptgposed one-step method is left for

future research.

1.4.1 Autoregressive Matrix Estimation

Each of theN equation of the unrestricted VARY model can be written as

Xi(t) = afz(t) + uP(t), (1.13)

whereX;(t) is theith univariate time series iX(t). z(t) = (X'(t —1);X'(t —2);..;X'(t — p))’
is theNp x 1 vector of lagged observationsy, = (a1, ..., 01N, ..., Apit, ..., dpin)’ IS aNpx 1
parameter vector, such that veg;....; af,) = ved[Al; A,, ...; AB)’). For each of thé\ equation of

the expanded restricted VAR model, similarly,

Xi(t) = afzo(t) + £°(1), (1.14)

the unknown autoregressive coefficient vea®r= (a1, ..., 01iN—my, ---, Opi1, ---» OpiN—my )’ 1S @
(N —rmy)p x 1 vector, such that véaj; ...; i) = ved A% AD: . ABIY). zo(t) = (X(t — 1); X4(t —
2);...;X(t—p)) isthe(N—m)p x 1 vector of lagged observations.

The Adaptive LASSO estimators af anda; are defined respectively as

AT
oTi = argm|n1—_ Z 2,70 Z wrijlaij| fori=1,...,N, (1.15)
- '1T>Q 0P TS s G fori=1,...,N 1.16
aTti = argmi i(t)—aizg(t) |+ = ii|Qii ori=1,..., .
i =argming 3 (1)~ azo(®)]"+ 5 J_zl Wrij|aij | (1.16)

whereAt is an appropriate pre-selected value controlling the dveséimated sparsity level in the
autoregressive models. Afr equals 0, then the LASSO estimation is simply the OLS esionat
and every element ia; has to be estimated; ¥r — o, the estimates of the parametgrare

all zeros, which means the estimated autoregressive deatBcare perfectly sparse. The choice

of At can be made by selecting it by the BIC criterion or by Crossedions.wri; andwrij are
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pre-estimator weighted penalties to the sparse structdresanda;. They help to separate zero

coefficients from nonzero coefficients when regressorsigtgyncorrelated. Following Zou (2006)

We USewrj = W andwrij = |aﬁ}SSq as the weighted penalties figjj| and|aj;| respectively,
WhereaﬁASSOandéTﬁAssoare the standard LASSO estimators whef = 1 for a;j andwrij = 1
for ajj.

In order to maintain asymptotic properties in estimatin@nda; in a high-dimensional con-
text, sparsity assumptions are required. We denote theo§etsnzero entries imr; and in q;
as 7, which hasq{-’i elements, andz%i_, which hasq%_ eIements.;ziiC anddi_c are the sets of
zero entries ina; and in aj, respectively. q{’-fi and q%{ are functions ofT. Since the estima-
tion of a;j is similar to the estimation oft;, we here only discuss the sparsitymf Following
Barigozzi and Brownlees (2014), the key assumptions on thebeumf nonzero entries in the
autoregressive coefficients and the pre-selected per@atstant controlling the overall estimated
sparsity level areg? = o(\/%) A%\/q?{ = 0(1), Tliﬂwoo’\%\/%: ®, \/ q%'TOgT -0 (%) and
At \/q>% =0(1) fori =1,...,N. These assumptions provide the restrictions among therthe u

Tlfcl

derlying true sparsity Ievequ?/i ), pre-selected penalty constant controlling the overstinsated

sparsity level 1) and rate of number of nodésasT grows to infinity €1). To identify the zero

entries ina;, we also need the following assumption on the signal strenigor alli = 1,...,N,
o/
there exists a sequence of positive real numisfs} such thafaij| > s¥ andTIim = 1l = =
—® 7V

for all ajj € 4.
Proposition 1.4.6.Under the Assumption 1 - 6 in Appendix A.1, asF oo,
1. if aij € €, Prob{arij =0} — 1, i=1,..,N
2. if aij € #C, Prob{aTij =0} — 1, i=1,..,N
3. a1 - aj, and thusA?, 2 A fork=1,...,p
A~ p — AP P o _
4. oti — aj and thusA;, — A fork=1,....p
Proof. See in Appendix A.2. n

Proposition 1.4.6 states that the Adaptive LASSO estimnsato(1.15) and (1.16) correctly se-
lect the nonzero coefficients asymptotically, and the estins are consistent. Even if the dimen-

sion of the network is large, this estimation procedure tiirsafely concentrate on estimating the
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nonzero coefficients using the limited information from tieservable sample, given the sparsity

assumption on the true coefficients vector.

1.4.2 Contemporaneous Covariance Matrix Estimation

The contemporaneous covariance matrix can be estimatdtkelgparse concentration matrix via
the sparse errors partial correlations. We use the estimatrategy in Peng, Wang, Zhou and
Zhu (2009) and Barigozzi and Brownlees (2014). The errordgbardrrelations matrixp has
generic component;j. The concentration matrix in the unrestricted mo&3l= [ZB]*l, and the
concentration matrix in the expanded restricted mdglek [ZS]*l, have the following relationship
with their respective errors correlations:

ol

pij = Corr(uf,uf) = ———— (1.17)
i)

S

wheres; is the(i, j) component o) andsj is the(i, j) component of§]. Moreover, the errors

(1.18)

pij = Corr(vP,vP) = —

correlations can be also expressed as the coefficients dinter regressions (see Lemma 1 in

Peng et al. (2009)):

N [ M
IE4] ]

N v
VﬁZéPﬁ gvt‘}ﬂtnﬁ, i=1..,N, t=1..T (1.20)
J# 11

We assume the concentration matrices as well as the caosredahatrices are sparse and denote
the sets of nonzero entries in the unrestricted and resdrtrors correlation matrices &, and
2, respectively. 25 and 25 are the sets of zero entries in the unrestricted and resdritrors
correlation matrices. The LASSO estimator of the errorgiglacorrelations in the unrestricted

model (1.3) and the one in the restricted model (1.5) are ele@fiaspectively as
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= argm|n1—_ ZZ gpﬁj\/jj”] ilzlmi‘ﬂ, (1.21)
N i—1

= argm|n1—_ ZZ Vi — Z‘pﬁ]\/i )"+ % Z o1 | (1.22)

whereu;; = Xi(t) — @/z(t) and 0 = X(t) — a/zo(t). yr is the tuning parameter controlling the

model sparsity level a&r in (1.15) and in (1.16). The estimator of the unrestrictexdoemtration

matrix S, denoted aé*#, and the the estimator of the expanded restricted contemtraatrix S},

denoted a$!, have entriesy;; = —pY;; /578t ; andsy; = —Prij4/StiSt ;- The estimatorsy;

andsy;; are given respectively by

; _
[ er’tl ] ) (1.23)

. 1
Stii = [Ti_lt;(ﬁt‘f)zl (1.24)

Wheref’tLij = U — Z']\lyél p%m / g—luﬂ andl”lt, = th z’j\lyél p'}'llm / ;_T]”J Vij

The estimator of the unrestricted errors concentratiomme&} can be obtained by iterating
between (1.21) and (1.23). The estimator of the expandedctes errors concentration matrix,
é‘{, can be obtained by iterating between (1.22) and (1.24) ntaye discussions on the assump-
tions to estimate the correlation matrices, we refer reatesee Peng et al. (2009) and Barigozzi
and Brownlees (2014).

Proposition 1.4.7.Under the Assumption 1 - 9 in Appendix A.1, as-Teo,
1. ifpY € 25, Prob{pf; =0} -1, i,j=1,..,N
2. if p¥ € 25, Prob{py;; =0} — 1, i,j=1,..,N
3. pY; = pY, and thus§ - §, =32
4. pY; —- pY, and thus§y 2 §, =3,
Proof. See in Appendix A.3. O
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Proposition 1.4.7 states that the LASSO estimators in j1a2#l (1.22) correctly select the
nonzero coefficients in the errors correlation matrics gagtrcally and the estimators are consis-
tent. By the relationships between errors correlations bacconcentration matrix in (1.17) and
(1.18), we obtain the consistent estimators of the conagatr matrices for the unrestricted model

(1.3) and the concentration matrices for the expanded triutesl model (1.5).

1.4.3 Granger Causality Measures Estimation

Note that each of the multiple horizon causality measure®uthe Assumption 1.4.1 is mainly
composed by two parts (see Definition 1.4.3 and Remark 1.4)Qutoregressive coefficients
in the unrestricted model (1.3) and in the expanded resttiotodel (1.5); ii) contemporaneous
covariances in the unrestricted model (1.3) and in the edp@amestricted model (1.5). We have
already shown consistency of the estimators in Propositiéré and Proposition 1.4.7.

Finally, the estimator of the multiple horizon causalityasare, fromX to XV, is defined as

o | deEw XY (t+h) L Fw(t)]}
CTWW"'”[ det{ IS [X (t + h)|.Z (1)] 35} ] (1.25)
where
~ hil A
2[X(t+h)|F(t)] = Z)cbq(s“rr)‘lfﬁa, (1.26)
q:
~ hil;\ A~ ~
2w XY (t+h)[F-w(b)] =J3[ qu(8¥)‘1fpé] %, (1.27)
0=
S
=3 (AYJ) @k, (1.28)
k=1
q
Pq= kz Al gk (1.29)
=1
Po=In, @ =In. (1.30)

The estimator of the multiple horizon causality measumesniX" to X", is defined as
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det{ JoZ[Xo(t + h)|.Z_w (1))}

élFWY = |n [

where

det{ 3 5[X(t +h)|.Z (1)]3; }

h—1
2X(t+h)|.7 (1) = %fﬁq(é%)l%
q:

$o= 1IN, Po=IN-m,.

|

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

Theorem 1.4.8.Under the Assumptions 1 - 9 in Appendix A.1, for any given$,1h2, ..., as

T — oo,

1. S[X(t+h)[.Z ()] - ZX(t+h)|.Z(t)];

2. $[Xo(t+M)|Z_w(t) = S[Xo(t + h)|F_w(t)];

3. SwXW(t+h) [ Fw(t) 2 Sw XV (E+h) [ Zow(b)];

4. Ch\y — CL(XW — XY|1);
5. CMywy — CL(XW — X)),

Proof. See in Appendix A.4.
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Now, we have the consistent estimators of the multiple loorcausality measures for any given
network. An estimation procedure similar to the one propgadeove can be applied to measuring
the point-wise edge strengthé—;] j, and the group-wise edge strength, ...,in,) — (j1,---s ny)s

Ch
for arbitrary horizorh > 1, and has similar limit properties.

1.5 Network Connectedness Measures

The world is not flat. While the relationships of entities in@onomy can be modelled by 2-
dimensional network representations, the economy itkelfiever, is multi-dimensionally struc-
tured. Different firms play different roles. Some of them ati&e: insurances companies sell
insurances, even though a wide range of insurance produoe sf them are distinctive: restau-
rants serve cuisines while Space X provides space tramgporservices. We do not assume we
have the prior knowledge of their exact roles, but we have thierconnection structures that can
be measured by our causality table.

We consider an economy of interest all-alimensional Euclidean space. For any given firm
i we associate with it a vector in the Euclidean space withdioates given the row (or column)
entries from the causality table. Since itierow (column) in the causality table measures the ef-
fects of firmi to (from) others, the direction of a firm’s vector can be ipteted as “what the firm’s
role is”: firmi’s vector direction tends to point to the companies that filras more relationships
to; the norm of a firm’s vector can be interpreted as “how gjrtire firm’s role is”: the norm of
firm i's vector measures the extent of the firmelationships to all companies in the economy. If
we use the interconnection relationships of a firm to others proxy of the role of the firm in an
economy, the causality table gives us the firms’ coordinatéiseir roles in the space of a multi-
dimensional economy. It helps us to study the structure tredgth of the interconnectedness of
an economic network with geometric illustrations, whichisgs the advantage of using network to
study economic and financial interconnections.

Following this logic, we define our new connectedness measarthe market network base on
the multi-dimensional economy setting. We hereafter thkeastimated causality measures table
as given. Note that a network can be divided into several reuips, the network can be viewed

as a combination of its sub-networks. In a stock market, xangle, the market index can be
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viewed as the weighted average of the prices of individualkst as well as the weighted average
of different sector indices. Since an economic network aaribwed as a network among firms
(firm-wise market), whose interconnections are measurexibpoint-wise edges method-{ |),

as well as a network among sectors (sector-wise market)sevhderconnections are measured
by group-wise edges methofh(io,...,in) — [J1, J2,---, Jm]), we have three types of connectedness
measures to gauge network interconnections: i) firm-wiskket@onnectedness, which measures
the interconnectedness of a firm-wise market; ii) firm-wisarectedness within a sector, which
measures the interconnectedness within a given sector imanfise market; and iii) sector-wise
market connectedness, which measures the interconnestedh a sector-wise market. These
three types of connectedness measures fully take advaoitdge flexibility of our network mea-
surement method, so they can be applied to study market net@anectedness in more flexible

ways than Billio et al. (2012) and Diebold and Yilmaz (2014).

1.5.1 Firm-wise Market Connectedness Measures

Market network connectedness can be decomposed by each iomhectedness to the market.
Firms’ roles in an economy determine the firms’ connectesiteshe market network. As firm
i's vector direction represents firiis connectedness in the economy, we will use filsrvector
direction as the foundation to measure the filsrconnectedness to the market network.

The connectedness, in term of economic role, of fitmthe economy can be measured by the
angle of firmi’s vector to the subspace of the economy composed by all thes. In Figure 1.3,
we use a simple 3-dimensional economy space to illustrégedba. The economy has only three
firms: i, k; andko. We want to study firmi's role connectedness to this market. From the causality
table, we choose the vector if(C;j ,Cik, ,Cix,). It measures the relationships frorto i, k; andks.
The direction of G;j ,Cix, .Cix,) in the 3-dimensional space determines filsreconomic role in this
market. 6 is the angle of’s vector to the subspace of the economy composeki lapdko,. If we
takek; andky as a unit,6 exactly measures the economic connectedness ofi fionk; andks.
Wheng = ’—ZT, i has no impact ok; andky; when6 = 0, is fully accounted for byk; andko.

Given forecast horizoh, theith row of the causality table measures the directed and wezgh

edges from the nodeto all nodes in an N-dimensional market network, which ha®denset
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(Gii Cik, .Cik,)

ko

Figure 1.3: Relative connectedness betwiesmd network

V ={1,..,N}. LetOUT" = [Cl},C,....CJ, OUT" contains information about all the firms
influenced byi. They are the “out” effects fromto all firms in the market. For=1,...,N €V,
we define the “out” connectedness angle of the fitmthe economy ag%/'(h),

ch

8% (h) = arcsin———_—— (1.38)
V=S UT T,

where we assumﬁOUTif{,Hg > 0, which is equivalent to say there exigts {1,...,N} such that
Ch #0. If [OUTY, [l2=0, we letg%"(h) = 0.

Bi?\t,“(h) measures the “out” connectedness from fitmthe economy and is a relative connect-
edness strength since it has been rescalgd, im/2]. The connectedness angﬂ%‘,“(h) =m/2 if

and only ifCl!

> 0andCl} =0foranyj € {1,...,i—1,i+1,...,N}, which implies firmi is isolated
with the economy in the sense that it has no impact on othepaares. IfCi*i‘ = 0 and thus the
projection angld?i?\‘,“(h) =0, it implies all relationships from firmto the economy are all from its
impacts to other firms in the economy.

The relative connectedness strength of firta the economy, measured B;?\‘,“(h), considers
the economic role of firm to the economy. It is a directional measure, and it is morated! to
relative economic connectedness. The extent of how stf@gdonomic connectedness, however,

is not simply captured b;@if’\‘;t(h). Besides the connectedness angle, we are also interested in
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the absolute connectedness strength. We define a furkigfi|OU T, ||, 63(h)) as a general
formula of the absolute connectedness strength ofifimrthe economyKout (|OUTY, [|, 637 (h))
is a function of firmi’s connectedness angle?\‘,‘t(h), and its causation strength to the economy,

IOUTR, Il Kour([IOUTY, |, 8%"(h)) should at least satisfy the following properties:

T
Kout (| OUTY [, 5) =0 (1.39)

Kout(oa ei?\L/jt(h)) =0 (1.40)

ﬁK OUTh ’Q'OUt h
out (| |,V|J] v ( ) >0 (1.41)
O||OUTY |

IKout(JJOUTH, ||, 83%(h))
) ) < .
5620 (h) =0 (42

The firmi has no connectedness to the economy if has no impact on all bitims in the
economy. The absolute connectedness strength betweentéirthe economy, should be an non-
decreasing function of its causation strength to the ecgraomd an nonincreasing function of its
connectedness angle to the economy.

A simple functional specification of the absolute connecésd strength of firmto the econ-

omy we use in this paper is
Kout(IOUTY |1, 83/ (h) = [OUTY || cosBR'(h). (1.43)

This absolute connectedness strength can be easily desethipto the causation strengfiQu Tif{, Il,
and the connectedness angR"(h). In geometric termsiout (|| OUTY ||, 8%"(h)) just measures
the norm of the projection dDUTif{, on the subspace spanned by the all other firms in the econ-
omy. We again use a simple 3-dimensional economy spaceustrdte this idea. The economy
has only three firmg;, k; andk,. The absolute connectedness strength of fitothis economy is

the projection of the vecto;,Ci, ,Cik,) on the subspace spannedikayandk,, which is shown in

Figure 1.4.
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(Gii Cik, .Cik,)

(Cii Cik, .Cik,) on {ky, ko}
ko

Figure 1.4: Absolute connectedness betwiesmd network

In summary, our absolute connectedness strength of fiorthe economy simultaneously takes
the firmi’s economic role structure and the economic role strengthaocount. In addition, the
absolute connectedness strength can be easily decommbsedease two parts. Moreover, it has
nice geometric interpretations in an N-dimensional ecan@pace as illustrated by Figure 1.4.
Therefore, our market connectedness measures, the meah8rais’ connectedness measures to
the economy, will also enjoy these features.

We define our firm-wise market network connectedness as timeodirms’ connectedness
weighted by number of firms in the market. A common practisdaénetwork literature is to use
the number of nodes to measure the size of a network. Thigenthat the connectedness of a

sector will not simply grow with market size and be compagadaiross different markets.

Definition 1.5.1. Given a market network with node sét= {1,2,...,N}, the Firm-wise Market
Network Relative Connectedness Structure Measure of “ofgtesf at horizorh, MRC\‘}gt(h), is

defined as following:

MRG(h) = % _icos@i?\‘,‘t(h) (1.44)

Definition 1.5.2. Given a market network with node sét= {1,2,...,N}, the Firm wise Market
Network Absolute Connectedness Strength Measure of “of#ttsf at horizorh, MA@gt(h), is
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defined as following:

MA =3 ZHOUT,*‘VHcose,O“(h) (1.45)

Remark 1.5.3. If the edges in a network are unweighted, the connection dénto the network

can be solely characterized by the connectedness aﬂ@j&h irrespective to its unweighted
absolute connectedness magnitude to the netw@k] T, VH Therefore, the Firm-wise Market
Network Relative Connectedness Structure Measure is blysicplivalent to the Firm-wise Mar-

ket Network Absolute Connectedness Strength Measure inotfieext of unweighted network.

Note that the edges in our network are directed. Followingjlar procedures, we can also
define market connectedness measures at “in” directiorerGivforecast horizan, theith column
of the causality table measures the directed and weightgelsatd the firm from all firms in the
N-dimensional market network, which has node\¢et {1,...,N}. LetIN" = [Cl.CB .. CR.),
INih contains all the directed edges information pointed fioffhey are the “in” effects to from
all firms in the market. For=1,...,N €V, the “in” connectedness angle of the fiinto the
economy,eiin (h), and the “in” absolute connectedness strength of the thei fiorthe economy,

Kin(IINf\/[1, 8% (D)), are defined respectively as

. Ch
'V (h) = arcsin—Z— (1.46)
’ N 112
and
Kin (1N [1, 6% (h) = [[IN{ || cosY, (h) (1.47)

Definition 1.5.4. Given a market network with node sét= {1,2,...,N}, the Firm-wise Market
Network Relative Connectedness Structure Measure of “iréogdf at horizorh, MRQ,'Z:(h), is

defined as following:

MRGY. (h) = Zicos " ( (1.48)

Definition 1.5.5. Given a market network with node sét= {1,2,...,N}, the Firm-wise Market
Network Absolute Connectedness Strength Measure of “iréotdf at horizorh, MAC{,T:(h), is

defined as following:
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MACI (1) = 5 1NV oS8 () (1.49)

1.5.2 Firm-wise Sector Connectedness Measures

The structure of an economic market can be viewed as a sodtabrk of sectors. Furthermore,
there is also a sub-network for each sector in an economiidrséction, we discuss the firm-wise
connectedness within each sector. Without loss of gemgrale consider an economic network
with node setv composed by two sector¥; andV,, whereV = {1,...,N}, V4 = {i1,...,in, },
Vo ={j1,-, Jn, }» ViNV2 =0,V UV> =V andn; +ny = N. V; andV; are disjoint and complete
sub-network elements &f.

Within a sectonV,, z= 1 or 2, our sector connectedness measures are defined inlarsimi
manner as the firm-wise market connectedness measuregionseé.1. Sector connectedness is
the sum of firms’ connectedness weighted by sector size.€ersgres that the connectedness of a
sector will not simply grow with its size and be comparableas different sectors in an economy.
Of course, sector size can be measured by different wayh, &by the number of firms in the
sector or by the market value of the sector. In this paper,seghe number of firms for simplicity.
This is also in line with the network literature that usuallges the number of nodes to describe

the size of a network.

Definition 1.5.6. Given a sector node s€t, z= 1, 2, the Firm-wise Sector Relative Connectedness

Structure Measure of “out” effects within secioait horizonh, MRCﬁz‘Jt(h), is defined as following:

1&
MRG(h) = 5 cosafi(h) (1.50)
ng;
wheren, = \Vz| is the number of nodes in the sector node\set {i1,...,in,} , i € Vz, B3/(h) =
arcsmHo—UT'l'W andOUT!, = [C',.CL. .. Clrl]n J'

Definition 1.5.7. Given a sector node séf, z=1, 2, the Firm-wise Sector Absolute Connectedness

Strength Measure of “out” effects within sectoat horizonh, MAC,\‘}Z‘“(h), is defined as following:

1 X
MAG{(h) = o Zl\|OU'I',V | cosB (h) (1.51)
|
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whereOU Tif{,z and6?/(h) are defined as above.

Definition 1.5.8. Given a sector node sé, z= 1, 2, the Firm-wise Sector Relative Connectedness

Structure Measure of “in” effects within sectoat horizonh, MRq,r;(h), is defined as following:

. 1 M .
MRG}(h) = = Zlcos i, (h) (1.52)
Nz £ ’
wheren; = |V;| is the number of nodes in the sector node\set {i1,...,in, } , i €V, i‘yr\‘,z(h) =
arcsm—h“— andIN\, = [CI\;,CP;,....CP ]/

H IVZH 1117 ~lal? "2 Inl '

Definition 1.5.9. Given a sector node Séf, z=1, 2, the Firm-wise Sector Absolute Connectedness

Strength Measure of “in” effects within sectoat horizonh, MAC‘{?Z(h), is defined as following:

MAGH(H) = 3 5 Iy cosalf (v (153)

wherelN{\, and8}, (h) are defined as above.

The sector connectedness measures are just the blockediBanmarket network connected-

ness measures for each sector in a firm-wise market .
Remark 1.5.10.For any giverh, if we haveCi*} = thi = 0 for anyi € V; and anyj € V», then
1. (n+n2)MRGE (h) = nyMRG (h) + naMRG (h)
2. (g4 nz)MACR (h) = niMACG(h) + naMAC (h)
3. (N +np)MRGY (h) = mMRGY (h) + naMRGY (h)
4. (ny+n2)MAGY (h) = iMAG] (h) +n:MAC( (h)

The market network connectedness can be obtained by ther secinectedness if the sectors
are the disjoint and complete decomposition elements oftagket network and if there is no
point-wise edge between different sectors. Intuitivelgadpng, the market connectedness is sim-
ply the weighted sum of sectors’ connectedness when there tausality edge between firms

across different sectors.
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1.5.3 Sector-wise Market Connectedness Measures

Similar to the firm-wise market connectedness measuressetir-wise market connectedness
measures also measure market interconnectedness. Butthiewse market connectedness mea-
sures gauge the interconnectedness among different setstead of different firms.

In a sector-wise market, nodes are groups of firms. We assushany firm can only belong
an unique sector. Suppose we h&esectors:V; fori =1,2,...,M. Then we havd/ = UiNI:1Vi
andVs = {V1,Vo,...,Vm}. In this case, the causality table is Bhby M matrix. Thei row of
the causality tablgGyyv,,Cvvs,, ---,Cuvy ), measures the effects from secitdo other sectors. The
sector-wise market connectedness measures are definadhitea s1anner as the firm-wise market

connectedness measures in section 1.5.1.

Definition 1.5.11. The Sector-wise Market Relative Connectedness Structuressivieaf “out”

effects at horizom, MRG)"(h), is defined as following:

MRC(h) = %Iicos (M), (1.54)

-
oher e, (1) = arosin bl andoUThy, = g -

Definition 1.5.12. The Sector-wise Market Absolute Connectedness Strengtisivieaf “out”
effects at horizom, MACY:(h), is defined as following:

1 M
MACQ(h) = v Zl |OU T || cosBd s (h), (1.55)
1=

h
out (h) — arcsin._ Y h _ich ch h y
where'y, (h) = arcsi HOUT\IQ,leHz’ andOU Ty, = [Chv,: vy -+ G-

Definition 1.5.13. The Sector-wise Market Relative Connectedness Structursieaf “in” ef-

fects at horizorh, MRGY, (h), is defined as following:

M

MRGJ(h) = %.Zlcose‘i/?»vs(m’ (1.56)

i=
h

where@f\, (h) = arcsin— 4 andIN{,,_=[Cl,,,CD.\,,....C] )",
i»Vs HlN\/i.,VSHZ i»Vs Vi 2Vi MVi
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Definition 1.5.14. The Sector-wise Market Absolute Connectedness Strengtlsiieaf “in”
effects at horizom, MAG](h), is defined as following:

. M .
MAGI() = 11 5 1IN oSG, (1.57)

cly

in _ i
where@'\. (h) = arcsi TV
Vs

h h h h
' andINVth - [CVlVi ’CVzVi ’ ""CVMVi]/'

1.6 Application to Implied Volatility Network Structures

In previous sections, we have proposed a flexible network@oetric measurement framework,
a reliable estimation procedure designed for high-dinmradicontexts and new market network
connectedness measures. In this section, we illustratgitieerange of applications of our market
network measurement methods by investigating a high-dsiaal volatility network in the US
equity market. We would like to study how the volatility netik is structured and how it changes
over time. Fruitful information extracted from the empai@xercises can be easily visualized by
our reporting figures.

More specifically, we study the static volatility networktivthe full sample from 2000 to 2015
to see how firms and sectors connect to each other. We inatsstige dynamics of the network
structures to see how the interconnections among firms anéhtérconnections among sectors
varied in the past 15 years. The market connectedness nesgsaposed in this paper are de-
signed for measuring market systemic risk. It is a commomarns that the systemic risk played
an important role in the 2007-2009 financial crisis. Thus wan@ne dynamic market connected-
ness with our measures, and compare it with market indices VilX index) before, during and
after the crisis period. Our market connectedness meaatgaonstructed based on the directed
and weighted edges in the market network, and the supgriafrthe “directed” and “weighted”
edges analysis against the “undirected” and “unweighteldies analysis is demonstrated by the

asymmetric effects between the financial sector and otloéorsein the volatility network.
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1.6.1 Data

Firms and sectors are connected with trade links or busiredagonships. It is an impossible
mission to collect all qualitative and quantitative bussménformation at firm-level to reveal their
interconnections. As Diebold and Yilmaz (2014) argue, hawestock markets, which reflect
forward-looking assessments of many thousands of smeategic and often privately-informed
agents, provide us with feasible information that is claséhe true business conditions and in-
terconnections. For instance, there are numerous invaswpeortunities in the world, and using
the S&P 500 index as a benchmark is almost a convention wrednaing excess returns in as-
set management. Therefore, we will study the crisis-sgasiblatility network in the US stock
market. In addition, we are also interested in examiningthwreour volatility connectedness mea-
sures can reflect the underlying market systemic risk treytsphn important role in the recent
global financial crisis.

The volatility in stock markets is latent, so we need an vidaproxy. The well-known VIX,
which has been widely accepted as a market volatility ingefirtancial practitioners, is calculated
from implied volatilities of the S&P 500 index options. Itsgnsitive to market turmoils. For each
firm, we also exploit the information in their respectiveioptcontracts. We use implied volatility
in our volatility network analysis, rather than using read volatility estimated from stock intraday
prices (see Diebold and Yilmaz (2014) and Barigozzi and Brees(2016)), for the quantities we
are dealing with are more comparable to market indices, (¥lX). Similar to the VIX index
known as a “market fear” index, our implied volatility netikaconnectedness can also be viewed
as “individual fear” connectedness. Volatility or impligdlatility is sensitive to “terrifying news”
in financial markets. For instance, the 9/11 attack terriffezl people in the stock market and
lead implied volatilities to jump up rapidly. Although théld event had very minor impacts on
most firms’ real business conditions and their interconaoast its shocks would spill over from
firms to firms and from sectors to sectors in stock markets bj@sause of liquidity concerns and
other risk issues faced by investors. The stock impliedtifities are inevitably contaminated by
shocks in financial markets since risks are traded on marké&sertheless, implied volatility is
still an excellent proxy to study the high-dimensional nenkolatility network. We hope that the

underlying market network structure can be at least pbrtiaicovered by its implied volatility
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network.

We estimate the volatility network of the S&P 100 componetgks quoted on 06/30/2015.
Similar to the VIX index for the S&P 500 stock composite, iisthaper the S&P 100 componehts
implied volatilities are constructed with their respeetat-the-money option contracts with 30-day
maturity. This implied volatility measures the expectedthtibty of the underlying stock over the
next 30 days. We hereafter only consider the option corgraih 30-day maturity. Generally
speaking, an at-the-money call (put) option usually hasla'deat approximately 0.5 (-0.5). A
simple way to get the at-the-money implied volatility is tiké the simple arithmetic mean of
the interpolated implied volatility of the call option wittelta 0.5 and the interpolated implied

volatility of the put option with delta -0.5:

1
Vi = 5GP+ IV °%). (1.58)

Wherelvﬁ‘l5 is firm i's interpolated implied volatility of the call option withetta 0.5 at time

t, andIVith)‘O-5 is firm i’s interpolated implied volatility of the put option with a -0.5 at time

t. The data information of the daily implied volatility withifterent delta levels are provided in
the OptionMetrics - Volatility Surface database. As the &§ramplied volatilities measure the
expected volatility of their stock prices over the next 3@sjehe daily sequence d¢fVit}t is a
highly persistent process. In other wortl4,;_; would have a strong predictive power to forecast
IVi+. To remove such self-effect that merely comes from the ap@ihg of measuring periods, we

analyze the innovation processes by taking daily first tifiees on each implied volatility series:
AlViy = Vit — Vit 1. (1.59)

This manipulation procedure is simple and easy to replitateNe will hereafter usélV;; to
estimate our implied volatility network.

The date range of the database is from 01/01/1996 to 08/B3/2lhe companies whose IPO

1270 be included in the S&P 100, the companies should be amanigtiier and more stable companies in the S&P
500, andmust have list options

Bpelta measures the degree to which an option is exposedfts shihe price of the underlying asset.

14Ang, Hodrick, Xing and Zhang (2006) use this manipulatioprapch to deal with the VIX index to test whether
the VIX index is market risk factor
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dates are after 01/01/2000 will be dropped off, so that weesamine the two most important
crises in the US stock market (i.e., the IT Bubble Burst and thari€ial Crisis of 2007-09). The
remaining full sample is from 20/08/1999 to 31/08/2015. fEh@re missing values on some dates
for some companies and we take linear interpolations to iefhie missing values to get completed
time series processes for estimations. We have 90 companiesfinal sampleN = 90. Appendix

B provides the ticker symbol list of nodes and their respecsiectors in our implied volatility
network. The Industry Group classification for each nodeasfthe North American Industry
Groups database from MorningStar, LLC.

As Diebold and Yilmaz (2014) point out, latent market netkvsiructures may vary with busi-
ness circles or may shift abruptly with market environmeng ( crisis and noncrisis). Whether
and how much it varies is ultimately an empirical matter dret¢ is no point to just simply assume
it is constant. Hence, we allow the network structure to betvarying, and thus the elements in
the causality measures table are also allowed to be timenegal® To capture time variations, we
will estimate the dynamic implied volatility network stituces with rolling samples.

Throughout the empirical exercise, We set thepagl and apply the VAR(1) model to approx-
imate the unconstrained and the constrained models. &dttnsame lag makes the conditional
variance comparable between the unconstrained modelfarmbnstrained models. We will first
estimate the static implied volatility network structurghwfull sample observations (20/08/1999 -
31/08/2015). As mentioned before, market connectednesBedecomposed into the connected-
ness within each sector and the interconnections amorgyeiiff sectors. Firm-wise interconnec-
tions within each sector and sector-wise interconnectaascertainly of interest. For example,
studying how financial firms connected to each other and haanéial industry affects other in-
dustries is important to understand the recent financisaiscrilfo investigate the dynamic patterns
of the volatility network structures, there is always a &adf between estimation accuracies and
more current conditional estimates when choosing the wafitstimation windows. To examine
market connectedness dynamics, we set the width of the mevimdow to be 2 years and update
measures every one month. For example, the estimates ombec2008 are estimated based on

the data from January 2007 to December 2008. By moving theatstin windows forward every

15This assumption does not contradict the constant parasmg#ting we made in estimating the multiple horizon
causality measures. The “calendar time” for time-varyirepsures and the “sampling time” to estimate the measures
are conceptually different. We just require the processée testimated are locally stationary.
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month, we can obtain the dynamic pictures of the impliedti@glanetwork.
In robustness check, we compare our results with thosengdtte lagp = 2 and those using
moving estimation windows of 1 yeaf (= 252). We find our results are robust to these different

pre-selected modelling settings.

1.6.2 Empirical Results

Market network econometric analysis can be worked undertywes of network representations:

i) firm-wise market structuré/t), under which the nodes in the market are the 90 companids; an
i) sector-wise market structur®4) under which the nodes in the market are the 8 sectors that the
90 companies belong to. We will apply the point-wise edgdyasigtechnique in the firm-wise

market structure and apply the group-wise analysis tecienigithe sector-wise market structure.

Static Implied Volatility Network Structures

Firm-wise market network structures give us a broad pictdifeow firms connect to each other.
Sub-market network structures zoom in firms’ interconmetgiwithin specific sector. Sector-wise
market structures merge the firms in the same sector and gigesimple picture of how different
sectors connect to each other.

In Figure 1.5, we show the firm-wise S&P 100 implied volafiltetwork structure. To examine
this big network (90 nodes and 9@dges), we only keep the directed and weighted etlge )
if its strength is greater or equal to 90% percentile of thergjths of the edges { -) and 90%
percentile of the strengths of the edges(j). In other words, we only keep an edge if and only if
this edge is important to the pair of nodes being connectat byi — j andj — i are both kept,
we only plot the one with greater strength without confusioit the first glance, edges are denser
around the firms in the financial sector. A majority of the exgeing shown in the figure comes
from financial firms. Moreover, the financial firms have moreioonnections due to the recent
financial crisis. It is also documented by Barigozzi and Breesl(2016) in the S&P 100 realized
volatility network. Interestingly, we observe that GE (ajanandustrial goods company) and SLB
(a major supplier to the oil and gas exploration and prodactndustry) have relatively strong

interconnections with the financial firms. GE was almost bapkin 2009 and 2010. The oil price
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is very volatile in the past ten years. As major credit sugrglifinancial firms are sensitive to these
economic shocks. Figure 1.5 has reflected some special traafkations in the US economy in
the past 15 years.

We identify the 10 most influential firms in Table 1.2. In Tall®, we report the minimum
value, the maximum value, the mean value and the quantit,(80% and 75%) of the entries
in each firm's “OUT” vector,|Ci1,Ci2,...,Cin]. The mean for almost every firm is greater than
its median and is close to the 75% quantile; the discreparitynithe first 25% quantile is very
small, but the discrepancy within the last 25% (75% - Max) i&hlarger. This represents strong
evidence for right skewness of the distribution of firms’ glged edges in the “OUT” direction.
Jackson et al. (2008) also documents right skewness inlbdistms in social networks. We select
the median, rather than the mean, to describe the centidgnen of the distributions of firms’
edges®.

We sort the firms’ tickers by their medians. The most influgrftrm in the static network is
the BAC (Bank of America). BAC helps to increase the forecastigion of the next-day implied
volatility by 0.07% for more than a half of the firms in the S&BQ1 and by at high as 5.33% for
the firm that it affects most. Seven financial firms (BAC, C, BK, ANET, F, JPM and MS) are
listed in the top 10 influential firms at Table 1.2. In Figurg,we have seen that many prominent
edges are from financial firms. The firms in the financial selstwe great influence in the S&P
100 network. On the other side, Table 1.3 reports the summiatistics of the entries in the
“IN” vector, [Cy;,Cyi,...,Cni]. Among the top 10 sensitive firms, only the firm (C) belongs ® th
financial sector and the other nine firms belong to the basienads sector or to the Industrial
goods sector. Therefore, the influential firms in the S&P 1&fvork are not those that will easily
be affected. The “influential” and “sensitive” we mentiorssdfar are in the sense of direct effects,
in which the causality measures are at forecast horizenl. In Table 1.4, we report the top 10
influential firms at different forecast horizors+= 1,2, 3,4, 5, to take spillover effects into account.
The firms and their orders in the list of top 10 influential firare slightly different at different
forecast horizons. For instance, in the case of only takinectieffects into account(= 1), the

most influential financial firm is BAC and 7 out of 10 most infltiahfirms are from the financial

16The firm’s centrality described by our median measures ifign@aent with the “Degree Centrality” in Freeman
(1978) and Jackson et al. (2008)
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sector; in the case of taking direct and indirect effects axdcount If = 5), the most influential
financial firm becomes AIG and only 4 out of 10 most influentiah8 is from the financial sector.
The technology firms are actually influential. In the casdnef 5, 4 out of 10 most influential
firms belong to the technology sector and the top 2 influefitrak are from the technology sector,
if the Apple Inc. is considered as a technology firm. In shomasuring a static network that
only characterizes direct effects in an economic netwofflarigrom enough to fully understand
all interconnections and indirect effects. In contrasitjg measuring direct and indirect effects
with the causality tables at different forecast horizons peovide us with “dynamic” pictures of
interconnections in the S&P 100 network with different effeadius. In many cases, what is truly
important is the firm’s total effect (direct effect and irett effect) rather than just its direct effect.
Next, we zoom in the financial sector and investigate thedotanections within the financial
sector. The firm-wise S&P 100 implied volatility network i the financial sector can be visu-
alized by Figure 1.6. In this figure, we only keep the dire@ed weighted edges with the strength
greater or equal to the 50% percentile of the strengths of®dgthis financial network. In other
words, only the “big” edges in this financial sector networll Wwe kept. Again, if bothi — |
andj — i are kept, we only show the one with greater strength. We fiatlttre most influential
firms in the financial sector, in the sense of the out-degraefrer of edges pointing from the
firms), are the top investment banks: Morgan Stanley (MS)d@an Sachs (GS) and Bank of
America(BAC). In Table 1.2, Morgan Stanley and the Bank of Aiggeare both listed in the top
10 influential firms and Goldman Sachs is the 16th influentiad.fiThe summary statistics of the
entries in the “OUT” vector in the financial network in Tablé Tonfirms their great influence in
the financial sector. Similar to the one in Table 1.2, the sddistributions in the financial sec-
tor are also skewed to right. We again use the median to thesttre central tendency of these
distributions. The top 3 influential firms in the financial ®&care in order as: BAC (median =
0.42), MS (median = 0.30) and GS (median = 0.25), compardd tivé 4th influential firms: BK
(median = 0.06). Roughly speaking, we could say that the fiaheector is actually controlled
by the top investment banks in the past 15 years. It is algpasting to look at who are the most
sensitive firms in this financial sector. In Table 1.6, we $oetfirms by their sensitivities. The
top 3 sensitive financial firms are in order as: C (median =)QABL (median = 0.32) and BAC

(median = 0.28). C is the only financial firm that is listed ie top 10 sensitive firms in the S&P

51



100 network, and it is also the most sensitive firms in the tirsector. BAC not only is the most
influential firms in the S&P 100 network, but also has strortgriconnections with other firms in
the financial sector since it is the most influential firm aslaslthe 3rd most sensitive firm in the
financial sector.

Lastly, Figure 1.7 shows the sector-wise S&P 100 impliectitly network structure. In this
network, the nodes are the sectors that group togetherésgective firms ag. We only keep the
directed and weighted edges with the strength greater @l émthe 50% percentile of the strengths
of edges in this sector-wise network. In other words, ong/‘thig” edges in this network will be
kept. Once again, if bot¥f — Vj andV; — V; are kept, we only show the one with greater strength.
An important observation is that all sectors are stronglfyaféected. It is in line with our common
wisdom. Four most influential sectors, in the sense of thedegtee (number of edges pointing
from the sectors), are Technology, Consumer Goods, Indu&dods and Financial. They are also
the key industries that support the growth of the US econantiiese 15 years. In Table 1.7, we
sort the sectors by their influences and obtain the top 4 infilalesectors: Technology (median =
3.27), Industrial Goods (median = 1.55), Consumer Goodsigned0.90) and Financial (median
=0.48). Itis similar to what we have found in Figure 1.7. Mmrer, Technology, Consumer Goods
and Financial are also on the list of four least sensitivéosecas reported in Table 1.8. Overall, the
relationships among different sectors in the S&P 100 ndtwaoe very asymmetric. There are two
groups in this network: the influential sectors (Technoldgglustrial Goods, Consumer Goods and
Financial) and the sensitive sectors (Services, Basic Mdgeindustrial Goods and Healthcare).
Interestingly, the most influential sector in the sectosenetwork (see Table 1.7) is the technology
sector, rather than the financial sector that has the mosemtfal firms in the frim-wise S&P
100 network found in Table 1.2. Note that the causality we susais based on the marginal
effect on prediction. When firms’ marginal effects are sntakir total (sector) marginal effect is
not necessarily small, especially if the component matgiffacts are positive correlated. Even
though the technology firms, as single components, are rinflasntial as the financial firms, the
technology sector, as a whole, can be more influential thafirtancial sector. This circumstance
is also discussed theoretically in the Section 3. Theretbiee group-wise network measurement
technique is an important complement for the point-wisevodt measurement technique to help

us understand underlying market network structures.
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Connectedness Dynamics in Firm-wise Market

In Figure 1.8, we show the dynamic patterns of the marketivelaonnectedness structure mea-
sures and the market absolute connectedness strengthreseasthe firm-wise market structure,
at forecast horizon 1y = 1, and at forecast horizon 18= 10. We only report the “out” connect-
edness measures as the “out” measures and their respentiveeasures are highly correlated.
This is not out of surprise, because one’s “out” causalitasoees are just someone’s “in” causality
measures, and thus their market connectedness measureawsib similar dynamic pattern.

If our market connectedness measures are truly able to mesiumarket systemic risk in the
US stock market, they will vary with market conditions thahde reflected by market indices like
the VIX index or the S&P 500 index. The market absolute cotewress strength measures indeed
have significant variations across different periods. P@o2007, the absolute connectedness
strength measures are close to zero, while the VIX indexlaively high before 2003 due to
the IT Bubble Burst. Starting from 2007, both the market cotedtess strength and the VIX
index start to soar and become fluctuate more at relativegly levels until 2011. This is exactly
the period of the recent global financial crisis. From 2012@45, the market connectedness
strength has a new “normal” level that is lower than the lelging the crisis but higher than the
level before the crisis, while the VIX index decreases toghecrisis level. Overall, there is an
apparent synchronization between our market connectedtrength measures and the VIX index,
except in the IT Bubble Burst period. It is actually in alignrhesith our common wisdom that the
major difference of the financial crisis of 2007-09 from atbases is the recent global financial
crisis is driven and amplified by the systemic risk in finahgiarkets. Our absolute connectedness
strength measure (“individual fear connectedness”) ltoke positive correlated with the “market
fear” level (VIX), but our measures do concentrate more @wslystemic risk that comes from the
connectedness in financial markets.

Unlike the absolute connectedness strength measure |atiggeonnectedness structure mea-
sure concerns more about the network connectedness serigtead of the connectedness strength.
We first look at the relative market connectedness struetuferecast horizon 1 and discuss it in
four periods (2000-2003, 2003-2006, 2006-2009, 2009-pM&ring 2000-2003, the level of the

relative connectedness structure measure is relativgly (0.90-0.95) and the stock market slides
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due to the IT Bubble Burst. The S&P 500 gets to a bottom in ear828nd starts to recover,
and the VIX index also starts to decrease. In this period 328@06), the relative connectedness
structure goes down. During the pre-crisis and crisis pef2906-2009), the relative connected-
ness structure climbs up rapidly, and touches a historezadrd ¢~ 0.95) at the end of 2008 when
is the also the most fearful moment in financial markets asshay the VIX index touching the
historical peak and the S&P 500 touching the bottom. Duri@@222015, the VIX index goes
down to normal and the S&P 500 fully recovers from the criBiterestingly, however, the relative
connectedness structure measure still remains at the @&l (> 0.95). Our conjecture is that
the financial market is still remaining at a “crisis zone”ttban be characterized by the high level
of the market connectedness structure.

When comparing the relative connectedness at differentésteéhorizons, we find the market
relative connectedness structure measures at forecagbidO are much closer to the upper
bound 1, than at forecast horizon 1. Note that longer fotdoaszon allows every node in the
network to have more steps of paths to connect each othereldive connectedness structure
measure will thus be larger at greater forecast horizonsceéleve do not expect to find big time
variations for the relative connectedness structure measuong horizons (e.gh = 10), while
we still can see that the market connectedness structursumesaat horizon 10 has a dynamic
pattern similar to the one at horizon 1.

In Figure 1.8, the market relative connectedness struch@a@sures and the market absolute
connectedness strength measures have striking diffeyeiaintic patterns across our sample pe-
riod. Absolute connectedness strength measures can begdesed into relative connectedness
structure measures and causation strengths. The difeei@ibe relative measures and the ab-
solute measures is totally accounted for by the time-vgrg@usation strengths. By comparing
these two types of measures at different periods, we finddhsation strengths are relative large
during the financial crisis. It again confirms our assertlmat bur causality measures can capture
elements of the market systemic risk.

Also, we provide the 90% bootstrap confidence intervalsferbsolute market connectedness
strength measures on some specific d&t€z004-01-20, 2005-01-20, 2006-01-20, 2007-01-20,

1’We do not report the confidence intervals every month in onnpée period because the bootstrapping procedure
is time costly.
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2008-01-20, 2009-01-20, 2010-01-20, 2011-01-20, 2012@12013-01-20 and 2014-01-20) in
Figure 1.9. We use the bootstrapping procedure that isairtalthe one described in Dufour and
Zhang (2015). The raise of the market absolute connecteditisngth during the financial crisis
period is statistically significant.

While our market connectedness measures do show dynamensattorresponding to dif-
ferent major market conditions (before crisis, duringisrignd after crisis), it still seems to be
counterintuitive that our dynamic connectedness measrestoo volatile”. For instance, one
may find the market connectedness strength measures jumpdugosvn frequent#, but the
underlying market structures has no way to change at thesenagn though the market structures
may change abruptly because of crisis. In fact, our estithiat@lied volatility network not only
measures the underlying market structures, but also egptihe market effects in the stock market
and in the option market. As we have discussed before, firmfgdied volatility is sensitive to
special events in financial markets. One of the regular itapbevents in the equity market is the
guarter earnings announcements. Publicly-traded corapdmave to release their earning reports
every three months regarding their financial conditionsyieg forecasts, etc. It means the firm’s
detailed information is only revealed to the public evemgthmonths. This kind of information is
crucial for firm’s credit grade and firm’s stock price targedleiated by equity analysts in the mar-
ket. If an earning report beats market expectations, thesfstock price could jump up overnight
and vice versa. As a result, option trading will become muohenactive during earnings seasons,
and thus the implied volatilities are usually more volatleing this period. Moreover, different
firms could release their earnings reports on differentgddtging a earnings season. Some in-
vestors would bet on some companies based on others’ rdlgastrmances, especially when
these firms are in the same sector where they face a similardsssenvironment. The high lever-
age and large possible payoffs of the option trading makege lproportion of active investors
choose to bet on the option mark&tTherefore, it is very likely that the connectedness messsur
of the implied volatility network would become more volatduring earnings seasons. Itis mainly
due to shocks in the financial market, rather than changeseirumnderlying market structures.

Thus, the dynamics of our implied volatility market conreslriess measures can be decomposed

18From 2007 to 2011, for example, we find about 10 spikes in thedig
¥Donders, Kouwenberg, Vorst et al. (2000) find firm’s implialatility increases before announcement days and
drops afterwards.
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into long-run stable market connectedness changes andrsindinancial fluctuations, and this is

exactly what we observe in Figure 1.8.

Connectedness Dynamics Within Single Sector in Firm-wise M&et

Taking the diagonal block that contains companies in a saéctthe firm-wise market causality
measures table, we have the sub-network structure for éi®is We do so for each sector, and
then obtain the sector connectedness measures within @wngtg sector in the firm-wise market.
Figure 1.10 reports the absolute connectedness strengtbunes within each of the 7 sectors
in our implied volatility networkC. As expected, the financial sector has the highest and the mos
persistent absolute connectedness strengths during tneciah crisis. Other sectors also have
higher connectedness strengths in this period, but theyegeminor when compared with the
financial sector. During the crisis, investors would be ng#ssitive to news comings, so the im-
plied volatility connectedness could become more flucthia&nce financial shocks (e.g., quarter
earnings releases) to implied volatilities more easilyl sper within a sector, at most of the times
when there are major spikes in the market connectednesg#isan Figure 1.8, we can find their

corresponding ones in one of the sector connectednesgtisan Figure 1.10.

Connectedness Dynamics in Sector-wise Market

As has been emphasized before, the econometric framewopoged in this paper provides the
first unified method to estimate point-wise effects and graige effects. The nodes in the sector-
wise network structuré/) in this empirical exercise are the 8 sectdihat the S&P 100 compo-
nents belong to.

In Figure 1.11, we report the dynamic patterns of the maisblate connectedness strengths
and the market relative connectedness structures in therseise market network at forecast hori-
zon 1 = 1) and at forecast horizon 18 £ 10). The sector-wise market absolute connectedness
strength measure at forecast horizon 1 has a sharp peakendhaf 2008. However, it does not
persistently remain at a high level compared with the alte@onnectedness strength measures in

the company-wise market structure during the crisis pestoalvn in Figure 1.8. In other words,

20The “Utility” industry is not included as it only contains erompany.
21Basic Materials, Consumer Goods, Financial, Healthcadydtrial Goods, Services, Technology and Utilities
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even if there is a high persistent market systemic risk dutire financial crisis, it is not due to
the connectedness among different sectors. The relativeectedness structure measures and the
absolute connectedness strength measures are positivetyated before 2009, while again, the
market connectedness structure does not decrease withatkethconnectedness strength after
the crisis. The sector-wise absolute connectednesssteustrengths in Figure 1.11 are generally
lower than the firm-wise strengths in Figure 1.8. It is beeasector-wise nodes have weaker in-
terconnections than firm-wise nodes in an economic netwookinected firms usually have close

business relationships and they tend to be in the same sector

Directed and Weighted Edges Dynamics in Sector-wise Market

We now look at the sector-wise network interconnections arerdetails. In particular, we con-
centrate on the financial sector, which has the greatesemfkion the US stock market in the past
10 years due to the global financial crisis, to see how thedatmections between the financial
sector and other sectors looks like.

In Figure 1.12 and Figure 1.13, we report the time-varyingdi effects from the financial
sector to other sectors and from other sectors to the finase@or. As expected, the financial
sector has the strongest influence on itself during the finhodsis. At the end of 2008, the
magnitude of the financial sector affecting itself soars tfoistorical peak with the VIX index
soaring, and it keeps at a relatively high level until 2011e IMd the financial sector has an
relatively strong effect on itself from 2009 to 2011, whiclatches the crisis period of financial
crisis of 2007-09 as our estimates utilize 2 years rollingy@as. The financial crisis is actually
not yet over in the global financial market after 2009. Fostance, the US financial crisis triggers
the European debt crisis in early 2010. From 2011 to 201 3fitla@cial sector still has a relative
strong effect on itself.

The effect from the financial sector on other sectors als@ases at the beginning of the crisis,
while the raise only lasts for a few months. In contrast, ko sectors only have negligible effects
on the financial sector, compared with the striking magmitoithe financial sector affecting itself.
The effects between the financial sector and other secteggte asymmetric: the financial sector
has a strong effect on others but the reverse is not true. 3yraraetry and the time variations

in effects between the financial sector and other sectorBroothe importance of directed and
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weighted edges setting in economic network analysis.

1.6.3 Robustness Check

Finally, we conclude this section with checking the robasmof our market connectedness re-
sults to the choice of lagg in the VAR(p) approximation to the causality estimation models and
to the width of the estimation sample windows. In fact, a#f& lags,p, correspond to different
information sets using in causality estimations; difféngiths of estimation windows correspond
to different sample market conditions. The estimates otmigdges will change with different
choices of them. Therefore, we do not expect that our estidnainnectedness measures would be
invariant to different lags and to different widths of estition windows. Instead, if the underlying
market systemic risk in the volatility network can truly beasured by our market connectedness
measures and the our econometric models are good apprexintatthe real world, the mea-
sures, under different pre-selected model settings, dhwaue similar dynamic patterns over time
following the changes in the underlying market systemik. ris

In particular, we compare our estimated results with thesienated with VAR(2) models and
with those estimated with 1-year estimation windows. Feglirl4 reports the market absolute
connectedness strength measures under three differer settings: i) VAR(1) and 2-year es-
timation windows (Benchmark); ii) VAR(2) and 2-year estineatiwindows; and iii) VAR(1) and
1-year estimation windows. They are estimated at foregasdn 1 and at forecast horizon 10 in
the firm-wise market network. They all have a similar dynapattern (low before 2007, soar up
from 2008, resume pre-crisis level in 2011 and has a milceaging trend from 2012 to present).
Figure 1.15 shows the robustness of the relative conneessdstructure measures with the same
model settings comparison. All of the three relative cotegeess structure measures at forecast
horizon 1 have a similar dynamic pattern (relatively higimir2001 to 2003, decline from 2003 to
2006, soar up from 2006 to 2009 and remain at the financiasdergel from 2009 to present). For
the connectedness structure measures at forecast hofiztitey keep at a high level all the time.

To summarize, our robustness check shows that the timengacharacteristics of our market
connectedness measures for the implied volatility netvior&stigated in this paper are robust to

the choices op in the VAR(p) approximation, and also robust to the choices of the widflike
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estimation windows for the modelling settings we examinavab

1.7 Conclusion

Economic and financial network analysis requires a well libpesl time series econometric frame-
work for empirical studies. Weaker restrictions on netwseltings, fewer assumptions on the
time series identification models and more empirical fléxibof the measurement framework
would be favoured. In this paper, we propose a novel times&tonometric method to measure
high-dimensional directed and weighted market netwonkcstires. Direct and spillover effects
at multiple horizons, between nodes and between groupsneasured in a unified framework.
We argue that a satisfactory network econometric framewmsgtudy market networks should be
able to estimate directed and weighted network structurdgscausality implications, and it can
be applied to study network spillover effects in a high-dasienal context. Indeed, our network
estimation method not only satisfies all these criteriaghaa enjoys other appealing features.

We measure causality at different horizons in a networkuthathe multiple horizon causality
measures based on flexible VAR models specified by the LAS$@aph. (Non-sparse) network
structures can be estimated from a sparse set of autorigregsfficients and concentration matri-
ces. Asymptotic consistency results of the estimators pfloacted and weighted edges measures
are also provided in this paper. We do not require sparssiyraptions on network structures or the
Gaussian assumption on econometric models. We succgssfualhect the causality literature with
the LASSO approach in application to economic and finanealark measurement. Moreover, to
the best of our knowledge, our econometric framework is tisedine, in the network econometric
literature, to explicitly allow point-wise edges (relatghips between firms) and group-wise edges
(relationships between sectors) to be measured in a uniietefvork.

With this framework at hand, we also provide the estimatetkatanetwork with new connect-
edness measures that are built upon the underlying netwaodtsres. Since an economic network
can be viewed as a network among firms as well as a network asewnigrs, we propose three
types of connectedness measures to gauge network intecdanrs. These types of connected-
ness measures fully take advantage of the flexibility of @iwork measurement method, so they

can be applied to study market network connectedness imblgewiays
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Our network measurement methods have a wide range of appfisaand can be applied in
a variety of research areas, including identifying and ¢fiang economic relationships between
firms, between sectors and between areas; measuring marketatedness; predicting financial
risks; guiding asset allocations in large portfolios; elote that many latent economic and fi-
nancial network structures can be estimated by our flexibtevork measurement method with
varieties of panel databases. Specifically, observingekplicitly identified economic network
centrality and consumer-supplier linkage have been shovire thew risk factors in asset pricing
and new determinants to predict financial variables, we &xpere pricing factors and financial
and macroeconomic variables drivers are to be discoveremibpetwork econometric measure-
ment methods.

To illustrate the usefulness of our method in network ans)yse investigate the S&P 100
implied volatility network in the US stock market, which cae viewed as a “individual fear”
network and has not yet been studied in existing literatuve.find that: i) 7 out of the 10 most
influential firms in the S&P 100 belong to the financial secamd top investment banks (Morgan
Stanley, Goldman Sachs and Bank of America) have the greafiesince in the financial sector; ii)
technology firms are influential when we consider indirefgas in the S&P 100 implied volatility
network; iii) market connectedness was especially stramgd the recent global financial crisis;
iv) the high market connectedness was mainly due to the loghectedness within the financial
sector and the spillovers from the financial sector to otketass; v) the financial sector had the
highest firm-wise connectedness from 2008 to 2010, whiledmaectedness of other sectors also
reach relatively high level during this period; vi) the cality effects between the financial sector
and other sectors were asymmetric and displayed consideratiation over time, which stresses

the importance of directed and weighted edges settings itkehaetwork analysis.
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Table 1.2: Summary statistics of causality measures frooh &am to other firms. This table
reports the summary statistics of each row of the firm-wisesabty table Ci_..]. The causality
table is estimated by the full data sample (20/08/1999 - &82@L5). Nodes are the firms of
selected S&P 100 components. For each firrwve report the minimum value, the maximum
value, the mean value and the quantiles (25%, 50% (mediahjs¥b) of the entries in its “OUT”
vector. The reported values are 100 times of the raw valunesaee kept with two digits. We sort
the tickers by their median values and identify the top 1Qenitial firms.

Sectof Ticker Median Mean Min 25% 75% Max Sector Ticker Median Mean Min 25% 75% Max

F BAC 0.07 043 0.00 0.00 051 533 | LMT 0.00 0.03 0.00 0.00 0.01 1.80
C AAPL 0.07 0.16 0.00 0.02 020 103 C KO 0.00 0.02 0.00 0.00 0.00 1.34
T CSCO 0.07 0.27 0.00 0.00 031 263 H AGN 0.00 0.03 0.00 0.00 0.01 2.27
F C 0.07 0.20 0.00 0.00 021 277 B CVX 0.00 0.04 0.00 0.00 0.01 1.59
F BK 0.06 033 000 000 033 575 T HPQ 0.00 0.00 0.00 0.00 0.00 0.16
F AIG 0.03 0.15 0.00 0.00 0.15 228 B OXY 0.00 0.08 0.00 0.00 0.02 3.81
F MET  0.03 0.11 0.00 0.00 0.07 132 H BAX 0.00 0.10 0.00 0.00 0.02 4.88
C F 0.03 0.12 0.00 0.00 0.10 4.04 B DVN 0.00 0.01 0.00 0.00 0.00 0.10
F JPM 0.03 0.11 0.00 0.00 0.08 083 H BMY 0.00 0.01 0.00 0.00 0.02 0.08
F MS 0.02 0.38 0.00 0.00 0.17 483 S CMCSA 0.00 0.30 0.00 0.00 0.14 6.38
H GILD 0.02 0.09 000 0.00 010 139 F ALL 0.00 0.20 0.00 0.00 0.07 4.67
| GE 0.02 0.17 0.00 0.00 0.08 363 F UsB 0.00 0.16 0.00 0.00 0.04 2.62
F WFC 0.02 0.15 0.00 0.00 0.12 39 B SLB 0.00 0.09 0.00 0.00 0.00 3.28
S TGT 0.02 0.06 000 000 005 037 T TXN 0.00 0.09 0.00 0.00 0.01 4.93
T IBM 0.02 0.07 0.00 0.00 0.06 1.02 S SBUX 0.00 0.07 0.00 0.00 0.01 6.14
F GS 0.02 0.12 000 0.00 0.08 1.70 T MSFT 0.00 0.06 0.00 0.00 0.02 2.96
T \Yr4 0.02 0.07 0.00 0.00 0.03 411 S DIS 0.00 0.06 0.00 0.00 0.01 5.11
F SPG 0.02 0.14 000 0.00 0.07 563 T ACN 0.00 0.06 0.00 0.00 0.01 3.49
S TWX 0.01 0.07 0.00 0.00 0.05 247 H UNH 0.00 0.06 0.00 0.00 0.01 2.78
B DOW 0.01 0.09 000 0.00 0.03 252 U EXC 0.00 0.06 0.00 0.00 0.01 4.19
| BA 0.01 0.11 0.00 0.00 0.03 7.36 H CVS 0.00 0.05 0.00 0.00 0.01 2.97
T EMC 0.01 0.04 0.00 0.00 0.03 078 S AMZN  0.00 0.05 0.00 0.00 0.03 0.97
F AXP 0.01 0.16 0.00 0.00 0.07 278 H LLY 0.00 0.05 0.00 0.00 0.01 3.86
T ORCL 0.01 0.05 0.00 0.00 0.02 326 H ABT 0.00 0.04 0.00 0.00 0.00 3.48
H PFE 0.00 0.06 0.00 0.00 0.03 251 B APC 0.00 0.04 0.00 0.00 0.00 1.71
S COST 0.00 0.02 000 0.00 0.02 098 T QCOM  0.00 0.03 0.00 0.00 0.01 0.74
H CELG 0.00 0.03 0.00 0.00 0.01 114 B XOoM 0.00 0.02 0.00 0.00 0.00 0.86
T INTC 0.00 0.04 0.00 0.00 0.03 0.68 | HON 0.00 0.01 0.00 0.00 0.00 0.29
] SO 0.00 0.09 0.00 0.00 001 7.63 S WMT 0.00 0.01 0.00 0.00 0.00 0.37
F COF 0.00 0.10 0.00 0.00 0.04 463 H BIIB 0.00 0.01 0.00 0.00 0.01 0.13
S UNP 0.00 0.04 000 000 0.01 193 C NKE 0.00 0.01 0.00 0.00 0.00 0.31
S MCD 0.00 0.08 0.00 0.00 0.01 6.30 S HD 0.00 0.01 0.00 0.00 0.00 0.14
B HAL  0.00 0.10 0.00 0.00 002 6.68 B MON 0.00 0.00 0.00 0.00 0.00 0.11
T T 0.00 0.05 0.00 0.00 0.02 370 C CL 0.00 0.00 0.00 0.00 0.00 0.20
H MRK  0.00 0.02 0.00 0.00 0.01 0.69 | GD 0.00 0.00 0.00 0.00 0.00 0.10
S FOXA 0.00 0.10 0.00 0.00 0.01 694 H AMGN  0.00 0.00 0.00 0.00 0.00 0.13
| CAT 0.00 0.01 0.00 0.00 0.01 045 | UTX 0.00 0.00 0.00 0.00 0.00 0.03
S Vv 0.00 0.11 0.00 0.00 0.04 798 B COP 0.00 0.00 0.00 0.00 0.00 0.01
| EMR 0.00 0.01 0.00 0.00 0.00 0.27 B DD 0.00 0.00 0.00 0.00 0.00 0.01
S EBAY 0.00 0.17 0.00 0.00 0.08 326 S FDX 0.00 0.00 0.00 0.00 0.00 o0.01
S WBA 0.00 0.02 0.00 0.00 0.01 070 C MO 0.00 0.00 0.00 0.00 0.00 o0.01
| MMM  0.00 0.03 0.00 0.00 0.03 044 S LOW 0.00 0.00 0.00 0.00 0.00 0.01
H JINJ 0.00 0.07 0.00 0.00 0.01 487 H MDT 0.00 0.00 0.00 0.00 0.00 0.01
| RTN 0.00 0.07 0.00 0.00 0.01 579 C PEP 0.00 0.00 0.00 0.00 0.00 0.01
S NSC 0.00 0.12 0.00 0.00 0.01 878 C PG 0.00 0.00 0.00 0.00 0.00 0.01

* B: Basic Materials; C: Consumer Goods; F: Financial; H: Headre; I: Industrial Goods; S: Services; T: TechnologylJiltities.
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Table 1.3: Summary statistics of causality measures to Banhfrom others firms. This table
reports the summary statistics of each column of the firmewausality tabled._.;]. The causality
table is estimated by the full data sample (20/08/1999 - @2(15). Nodes are the firms of
selected S&P 100 components. For each firmve report the minimum value, the maximum
value, the mean value and the quantiles (25%, 50% (mediahy3%b) of the entries in its “IN”
vector. The reported values are 100 times of the raw valuesaee kept with two digits. We sort
the tickers by their median values and identidy the top 18isea firms.

Sectof Ticker Median Mean Min 25% 75% Max Sector Ticker Median Mean Min 25% 75% Max

B OXY 0.02 0.19 0.00 0.00 0.17 381 H BIIB 0.00 0.01 0.00 0.00 0.01 0.04
| RTN 0.02 0.09 0.00 001 0.03 579 S WMT 0.00 0.01 0.00 0.00 0.01 o0.11
| LMT 0.01 0.02 0.00 0.00 0.02 022 U SO 0.00 0.09 0.00 0.00 0.01 7.63
B SLB 0.01 0.25 0.00 0.00 0.10 3.26 H JINJ 0.00 0.20 0.00 0.00 0.01 4.88
| GD 0.01 0.05 0.00 0.00 0.05 059 C NKE 0.00 0.02 0.00 0.00 0.03 0.25
F C 0.01 0.18 0.00 0.00 0.07 334 S EBAY 0.00 0.04 0.00 0.00 0.02 1.14
S DIS 0.01 0.17 0.00 0.00 0.03 511 S AMZN  0.00 0.10 0.00 0.00 0.01 4.93
F WFC 0.01 0.15 0.00 0.00 0.07 352 H CELG 0.00 0.02 0.00 0.00 0.00 1.14
B COP 0.00 0.09 000 0.00 0.09 132 B HAL 0.00 0.11 0.00 0.00 0.02 6.68
| EMR 0.00 0.04 0.00 000 0.04 051 F BK 0.00 0.17 0.00 0.00 0.01 5.75
] GE 0.00 0.18 0.00 0.00 0.04 213 S FOXA 0.00 0.15 0.00 0.00 0.01 6.94
F ALL 0.00 0.26 0.00 0.00 0.07 396 S UNP 0.00 0.15 0.00 0.00 0.02 2.87
B DD 0.00 0.05 0.00 0.00 0.03 098 S CMCSA 0.00 0.13 0.00 0.00 0.01 6.38
| BA 0.00 0.14 0.00 000 0.04 736 S NSC 0.00 0.13 0.00 0.00 0.02 8.78
T T 0.00 0.10 0.00 0.00 0.03 370 F BAC 0.00 0.13 0.00 0.00 0.04 5.33
F MET 0.00 0.09 0.00 0.00 003 152 C F 0.00 0.11 0.00 0.00 0.01 4.04
H MDT 0.00 0.02 0.00 0.00 0.02 0.18 B CVX 0.00 0.11 0.00 0.00 0.08 1.06
S WBA 0.00 0.02 0.00 0.00 0.02 020 B DVN 0.00 0.09 0.00 0.00 0.05 1.84
| HON 0.00 0.02 0.00 0.00 0.01 0.40 s \Y 0.00 0.09 0.00 0.00 0.00 7.98
F SPG 0.00 0.15 0.00 0.00 0.03 563 S MCD 0.00 0.09 0.00 0.00 0.01 6.30
F COF 0.00 0.08 0.00 0.00 0.01 463 C KO 0.00 0.09 0.00 0.00 0.01 3.36
H UNH 0.00 0.12 0.00 0.00 0.03 422 H PFE 0.00 0.07 0.00 0.00 0.02 2.63
B APC 0.00 0.11 0.00 0.00 0.07 171 S TWX 0.00 0.07 0.00 0.00 0.02 1.11
T MSFT  0.00 0.07 000 0.00 0.02 296 B XOM 0.00 0.05 0.00 0.00 0.04 0.62
F AXP 0.00 0.12 0.00 0.00 0.04 275 B MON 0.00 0.05 0.00 0.00 0.01 0.70
H ABT 0.00 0.02 0.00 000 0.02 030 T EMC 0.00 0.05 0.00 0.00 0.00 2.17
H CVS 0.00 0.06 000 0.00 001 297 T ORCL 0.00 0.05 0.00 0.00 0.01 3.26
F usB 0.00 0.08 0.00 0.00 0.02 223 S HD 0.00 0.05 0.00 0.00 0.04 0.63
B DOW  0.00 0.05 000 0.00 001 252 T ACN 0.00 0.04 0.00 0.00 0.00 3.49
F GS 0.00 0.08 0.00 0.00 0.02 170 | CAT 0.00 0.04 0.00 0.00 0.01 0.76
S SBUX 0.00 0.17 0.00 0.00 0.04 6.14 S TGT 0.00 0.04 0.00 0.00 0.04 041
C CL 0.00 0.02 000 0.00 0.02 039 S LOW 0.00 0.04 0.00 0.00 0.02 0.50
S FDX 0.00 0.03 0.00 0.00 0.03 046 F JPM 0.00 0.03 0.00 0.00 0.00 1.21
F MS 0.00 0.17 0.00 0.00 0.05 363 H AGN 0.00 0.03 0.00 0.00 0.00 2.27
T QCOM 0.00 0.04 000 0.00 0.02 093 F AlIG 0.00 0.03 0.00 0.00 0.00 1.86
U EXC 0.00 0.13 0.00 000 0.02 419 T vz 0.00 0.03 0.00 0.00 0.00 0.96
S COST 0.00 0.13 0.00 0.00 0.03 259 C PEP 0.00 0.02 0.00 0.00 0.01 o0.64
| MMM  0.00 0.03 0.00 0.00 0.02 059 H MRK 0.00 0.02 0.00 0.00 0.01 o0.28
H AMGN 0.00 0.03 0.00 0.00 0.02 0.66 | UTX 0.00 0.02 0.00 0.00 0.01 0.45
C AAPL 0.00 0.02 0.00 000 0.01 020 T HPQ 0.00 0.02 0.00 0.00 0.02 o0.18
T INTC 0.00 0.01 0.00 000 0.01 015 T TXN 0.00 0.02 0.00 0.00 0.02 0.24
H BAX 0.00 0.09 0.00 000 0.01 348 T Csco 0.00 0.01 0.00 0.00 0.01 0.20
H BMY 0.00 0.01 0.00 0.00 0.01 0.09 C PG 0.00 0.01 0.00 0.00 0.00 0.29
H LLY 0.00 0.08 0.00 0.00 0.02 38 H GILD 0.00 0.01 0.00 0.00 0.01 0.13
T IBM 0.00 0.03 0.00 0.00 0.02 1.17 C MO 0.00 0.01 0.00 0.00 0.00 0.08

* B: Basic Materials; C: Consumer Goods; F: Financial; H: Heedre; I: Industrial Goods; S: Services; T: TechnologytJttities.
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Table 1.4: Top 10 influential firms at different forecast koris. This table reports the top 10
influential firms and their respective sector at differemét@ast horizond)= 1,2, 3,4,5. Given the
forecast horizorh, we obtain the summary statistics of each row of the firm-wiesality table
[Cih_,,]. The causality table is estimated by the full data sampl0@/1999 - 31/08/2015). Nodes
are the firms of selected S&P 100 components. For eachi fiwe have the median value of the
entries in its “OUT” vector. For each given forecast horizpmve sort the tickers by their median
values and identify the top 10 influential firms.

h=1 h=2 h=3 h=4 h=5
Rank Sector Ticker Sectof Ticker Sectof Ticker Sectof Ticker Sectof Ticker

1 F BAC T CSCO T CSCO T CSCO T CSCO
2 C AAPL C AAPL C AAPL C AAPL C AAPL

3 T CSCO F C F AlIG F AlIG F AlIG

4 F C F AlG F C F C F C

5 F BK F GS F GS F GS F GS
6 F AlIG I GE I GE I GE I GE

7 F MET F MS F JPM F JPM F JPM
8 C F F JPM C F C F C F

9 F JPM F MET T IBM T IBM T IBM

10 F MS C F F MET T EMC T EMC

* B: Basic Materials; C: Consumer Goods; F: Financial; H: Hiezdre; I: Industrial Goods; S: Services; T: TechnologyJtllities.
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Table 1.5: Summary statistics of causality measures froth @aancial Firm to other financial
Firms. This table reports the summary statistics of the fiise causality table blocked by the
financial sectorQ;_.j], wherei, j € Financial Sector. The causality table is estimated by the fu
data sample (20/08/1999 - 31/08/2015). Nodes are the firmsletted S&P 100 components. For
each financial firm, we report the minimum value, the maximum value, the meanevahd the
guantiles (25%, 50% (median) and 75%) of the entries in itd TOvector truncated within the
financial sector. The reported values are 100 times of thevadues, and are kept with two digits.

We sort the tickers by their median values and identify tiee3anfluencial firms in the financial
sector.

Ticker Median Mean Min 25% 75% Max

BAC 0.42 1.21 0.00 0.04 166 5.33
MS 0.30 1.19 0.00 0.04 221 4.83
GS 0.25 043 0.00 0.00 0.82 1.70
BK 0.06 091 0.00 0.00 0.98 5.75
WFC 0.03 049 0.00 0.00 0.38 3.96
ALL 0.01 0.30 0.00 0.00 0.37 1.46
SPG 0.01 054 0.00 0.00 0.08 5.63
AXP  0.00 043 0.00 0.00 0.24 2.78
C 0.00 042 0.00 0.00 0.583 2.77
AlG 0.00 0.14 0.00 0.00 0.12 0.74
COF 0.00 0.39 0.00 0.00 0.12 4.63
JPM  0.00 0.10 0.00 0.00 0.15 0.51
MET 0.00 031 0.00 0.00 0.58 1.32
USB 0.00 0.11 0.00 0.00 0.03 0.55
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Table 1.6: Summary statistics of causality measures to Baahcial firm from other financial
firms. This table reports the summary statistics of the firirewcausality table blocked by the
financial sector@;_i], wherei, j € Financial Sector. The causality table is estimated by tHe fu
data sample (20/08/1999 - 31/08/2015). Nodes are the firssletted S&P 100 components. For
each firmi, we report the minimum value, the maximum value, the meanevahd the quantiles
(25%, 50% (median) and 75%) of the entries in its “IN” vectarnicated within the financial
sector. The reported values are 100 times of the raw valndsar@ kept with two digits. We sort
the tickers by their median values and identify the top 3isigadirms in the financial sector.

Ticker Median Mean Min 25% 75% Max

C 0.33 0.65 0.00 0.03 0.94 3.34

ALL 0.32 1.02 0.00 0.02 221 3.96

BAC 0.28 064 0.00 0.00 0.63 5.33

SPG 0.22 0.85 0.00 0.13 0.64 5.63
MET 0.07 036 0.00 0.00 0.49 1.52
MS 0.01 0.38 0.00 0.00 0.62 1.75
WFC 0.01 0.66 0.00 0.00 1.00 3.52
BK 0.00 096 0.00 0.00 0.75 5.75

AXP  0.00 044 0.00 0.00 0.31 2.75
AlIG 0.00 0.04 0.00 0.00 0.01 0.30
COF 0.00 046 0.00 0.00 0.18 4.63
GS 0.00 0.23 0.00 0.00 0.24 1.70
JPM  0.00 0.06 0.00 0.00 0.01 0.47
UsSB 0.00 0.23 0.00 0.00 0.00 2.23
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Table 1.7: Summary statistics of causality measures frach sactor to other sectors. This table
reports the summary statistics of each row of the sectoe-vasisality tableQy v ]. The causality
table is estimated by the full data sample (20/08/1999 -82@L5). Nodes are the sectors whose
firms are selected in the S&P 100 components. For each 3&ctee report the minimum value,
the maximum value, the mean value and the quantiles (25%,(B@dian) and 75%) of the entries
in its “OUT” vector. The reported values are 100 times of the values, and are kept with two
digits. We sort the sectors by their median values and ifjetiite top 4 influential sectors in the

economy.

Sector Median Mean Min 25% 75% Max

Technology 3.27 5.75 0.00 0.00 7.40 18.84
Industrial Goods 1.55 3.28 0.00 0.01 3.16 15.04
Consumer Goods 0.90 1.07 0.00 043 147 3.02

Financial 0.48 9.61 0.00 0.05 5.46 57.89
Utilities 0.08 1.59 0.00 0.00 0.27 11.83
Services 0.00 7.74 0.00 0.00 2.67 52.77
Healthcare 0.00 3.15 0.00 0.00 0.25 2458

Basic Materials 0.00 3.07 0.00 0.00 043 22.82

Table 1.8: Summary statistics of causality measures to sacior from other sectors. This table
reports each column of the summary statistics of the sedt®-causality tableGy _\;]. The
causality table is estimated by the full data sample (20@®2 - 31/08/2015). Nodes are the
sectors whose firms are selected in the S&P 100 componentseaEb secto¥;, we report the
minimum value, the maximum value, the mean value and thetdesu@25%, 50% (median) and
75%) of the entries in its “IN” vector. The reported valuee 400 times of the raw values, and
are kept with two digits. We sort the sectors by their medaines and identify the top 4 sensitive
sectors in the economy.

Sector Median Mean Min 25% 75% Max

Services 1.12 10.91 0.00 0.00 16.09 52.77
Basic Materials 1.11 443 0.00 0.00 3.63 2282
Industrial Goods 0.69 272 0.00 0.06 2.28 15.04

Healthcare 0.57 3.79 0.00 0.00 1.84 2458
Technology 0.36 264 0.00 0.00 0.77 18.84
Consumer Goods 0.09 0.73 0.00 0.00 0.84 3.02
Utilities 0.06 208 0.00 0.00 125 11.83
Financial 0.00 796 0.00 0.00 145 57.89
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Figure 1.5: Firm-wise S&P 100 implied volatility network hik is a direct effect network corre-
sponding to the causality tablg:ilj]. The causality measures table is estimated by the full data
sample (20/08/1999 - 31/08/2015). Nodes are the firms ofwaEleS&P 100 components. Differ-
ent colors of the nodes correspond to different sectorghieatodes belong to (skyblue: financial;
lawn green: healthcare; pink: industrial goods; purplevises; blue: technology; plum: utilities;
orange: basic materials forest green: consumer goods).Wekeep the directed and weighted
edgesi(— j) if Gjj is greater or equal to the 90% percentile eleme@®WiT! (Ci.) and the 90%
percentile element iﬂ\lj1 (C,j). Wheni — j andj — i are both kept, only the edge with greater
strength will be shown in this figure. The colors of the edgesaspond to the colors of the source
nodes. The thickness of the edges are weight rescaled.
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Figure 1.6: Firm-wise S&P 100 implied volatility network thin financial sector. This is a direct
effect network corresponding to the blocked causalityeta{ﬁﬁ-] wherel, j € Financial (both node

i and nodg are the firms that selected from S&P 100 components and b&lerfqancial sector).
The causality measures table is estimated by the full datales(20/08/1999 - 31/08/2015). Nodes
are the firms that selected from S&P 100 components and bé&bothg financial sector. We only
keep the directed and weighted edges (j) if Gj; is greater or equal to the 50% percentile element
in the blocked causality measures tabﬁ(q%] wherei, j € Financial. The darkness of the nodes
corresponds to the out-degree of the nodes in this filterésank (e.g., MS, BAC and GS have
higher out-degree). When— j andj — i are both kept, only the edge with greater strength will
be shown in this figure. The thickness of the edges are wegglcated.
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Figure 1.7: Sector-wise S&P 100 implied volatility networkhis is a direct effect network cor-
responding to the causality tab[é?W] The causality table is estimated by the full data sample
(20/08/1999 - 31/08/2015). Nodes are the sectors of the &atested from S&P 100 components.
We only keep the directed and weighted edgés Vj) if Cyy, is greater or equal to the 50%
percentile element in the causality measures tqiﬁf;e\, The darkness of the nodes corresponds
to the out-degree of the nodes in this filtered network (€gnsumer Goods, Financial, Industrial
Goods and Technology have higher out-degree). When V; andV; — V; are both kept, only
the edge with greater strength will be shown in this figuree Thickness of the edges are weight

rescaled.
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Figure 1.8: Firm-wise market connectedness “out” measaneisthe VIX index. The blue solid lines are our “out” connelctess
measures (relative connectedness structure: upper raolue connectedness strength: bottom row) and the gredmlidas are the
VIX index. The reported connectedness measures are estimaforecast horizon 1 (left column) and at forecast horiz0 (right
column). All measures are estimated every 1 month by the VAR@dels with 2-year rolling estimation windows. The nodéthe
underlying market are the companies that selected from&re1®0 components.
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Figure 1.9: 90% bootstapping confidence intervals of maksblute connectedness strength “out” measures. For ase(20/01/2004,
20/01/2005, 20/01/2006, 20/01/2007, 20/01/2008, 20419220/01/2010, 20/01/2011, 20/01/2012, 20/01/2013)120014), we con-
struct a simple resampling bootstrap confidence intervillemarket absolute connectedness strength “OUT” measheeconfidence
level is set to be 90%. All measures are estimated by the VAR@Adels with 2-year rolling estimation windows. The nodeshef
underlying market are the companies selected from the S&Rc@hponents.
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Figure 1.10: Sector connectedness “out” measures and edéx. The sector connectedness measures are definedamsitiected-
ness measures within each of the 7 sectors (Financial, déayy Basic Materials, Healthcare, Consumer Goods, Indli§oods and
Services). The solid blue lines are our absolute sectoraxirdness “out” strength measures and the green dashiedgga/1X index.
All measures are estimated every 1 month by the VAR(1) modeks2vyear rolling estimation windows. The nodes of the utyeg
market are the companies selected from the S&P 100 commnent
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Figure 1.11: Sector-wise market connectedness “out” measand the VIX index. The blue solid lines are our “out” cocteeness
measures (relative connectedness structure: upper raolue connectedness strength: bottom row) and the gredmlidas are the
VIX index. The reported connectedness measures are estimaforecast horizon 1 (left column) and at forecast horiz0 (right
column). All measures are estimated every 1 month by the VAR@dels with 2-year rolling estimation windows. The nodéthe
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Figure 1.12: Sector-wise causality measures from the finheector to other sectors. The blue solid line is our catysaleasures
and the green dash line is the VIX index. This figure reporesdinect effects from the financial sector on other sectoh& Mmeasures
are estimated at forecast horizbe= 1 (C|1:i ). Al measures are estimated every 1 month by the VAR(1) nsodeh 2-year rolling
estimation windows. The nodes of the underlying marketlaeesectors whose companies are selected from the S&P 10M®oems.
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Figure 1.13: Sector-wise causality measures to the finaseaor from other sectors. The blue solid line is our catysateasures
and the green dash line is the VIX index. This figure reportsdinect effects from other sectors to the financial sectbe measures
are estimated at forecast horizbe= 1 (C?_} F'n)' All measures are estimated every 1 month by the VAR(1) nsodéh 2-year rolling
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Figure 1.14: Robustness of firm-wise absolute market cordaess strength “out” measures. The blue solid lines aralosolute
market connectedness strength “out” measures and the dasérlines are the VIX index. All measures are estimatedyeiv@nonth.
The nodes of the underlying market are the companies sdlécta the S&P 100 components. The upper row reports the messu
estimated with the VAR(1) model (p=1) and with 2-year rolliegtimation windows (year=2). The middle row reports the sness
estimated with the VAR(2) model (p=2) and with 2-year rolliestimation windows (year=2). The bottom row reports the suess
estimated with the VAR(1) model (p=1) and with 1-year rolliegtimation windows (year=1). The left column reports theasuges
estimated at forecast horizon 1 (h=1) and the right colurponts the measures estimated at forecast horizon 10 (h=10).
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Figure 1.15: Robustness of firm-wise relative market coratkwtss structure “out” measures. The blue solid lines arérouwise
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Chapter 2

Centralities in llliquidity Transmission
Networks and the Cross-Section of

Expected Returns

Abstract

This paper investigates the relationship between stoicjuidity spillovers and the cross-section
of expected returns. | study industry-level illiquidityibpvers in a directed network that describes
the interconnections among stocks’ bid-ask spreads, whermterconnections are latent and are
estimated by a Granger-type measure. In the directedidlitptransmission network, the illiquid-
ity of high sensitive centrality (SC) industries, i.e., ta@tive at receiving illiquidity from others,
as well as high influential centrality (IC) industries, i.#hose active at transferring illiquidity to
others, tends to covary with that of their neighbours andim®ours’ neighbours across different
horizons due to illiquidity spillovers. As a result, longnreeturns of the portfolios that contain
stocks of central (high SC or high IC) industries may be motatite because of weak diversifi-
cation of the liquidity risk across different horizons. Bhinvestors would require compensations
for holding these central stocks. | confirm this conjecturd ind that central industries in illig-
uidity transmission networks do earn higher average stetthkms (around 4% per year) than other

industries. Market-beta, size, book-to-market, momentiomidity and idiosyncratic volatility
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effects cannot account for the high average return earneetuyal industries.

2.1 Introduction

Liquidity plays a central role in the functioning of financraarkets. Stock market liquidity is
documented as being closely related to business cyclesSjislforp and degaard (2011)), stock
market returns (Amihud (2002)) and cross-sectional retyRastor and Stambaugh (2003)). In
a financial market where everyone is probably connected @oybedy else, the illiquidity risk
exposure for a firm is not only related to its idiosyncratmuidity level and its correlation to
market liquidity conditions, but also closely related te throperties of the connected individual
firm. For example, a firm’s poor liquidity condition could beesult of drops in liquidity of its
connected firms due to illiquidity transmissions (see OhL@and Cespa and Foucault (2014)
among others). Current literature on illiquidity transnoss is mainly focusing on undirected
commonality and aggregated contagion in liquidignd on directed illiquidity spillovers between
two firms, two stocks and two marketsin the recent financial crisis, however, we observe that
a major market-wide liquidity problem could be a result difjilidity spillovers originated from
“important” industries, e.g., the financial industry. Nouaoh attention is paid to understanding
the heterogeneity in market-wide illiquidity spilloverso better understand this issue, this paper
investigates the spillover risk of illiquidity through melihg the market-wide illiquidity spillovers
in a directed network that describes the interconnectiorag industries’ idiosyncratic illiquidity
risks3 Then | examine the relationship between the heterogenetesaf industries in illiquidity
spillovers and the cross-section of expected returns.

When studying illiquidity spillovers in network analysisewan explore the architecture of the
spillovers as a mechanism of how individual illiquidity éwes within an “illiquidity network”.
This exploration involves looking into the underlyinggjliidity transmission structure, rather than
just superficially treating the aggregated market illigtyichs a given outcome. In network analy-

sis, centrality is a concept referring to a node’s positiothie functioning of network spillovers.

1See Cifuentes, Ferrucci and Shin (2005), Brockman, Chudéérignon (2009), Hameed, Kang and Viswanathan
(2010), Karolyi, Lee and van Dijk (2012), Koch, Ruenzi andr&s (2016) among the most recent studies.

2See, e.g., Goyenko and Ukhov (2009), Oh (2013) and Cespaam#it (2014).

3Hameed et al. (2010) document inter-industry spilloveea in liquidity, which are likely to arise from capital
constraints in the market making sector.
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Actually, a directed network assumption is straightforviaut implicit when considering network
spillovers as any financial spillover must have a directiaih & source and a target. In this regard,
| study network centrality in two directions: i) sensitivertrality (SC), which measures the de-
gree of an industry being affected by others, and ii) infligmeentrality (IC), which measures the
degree of an industry affecting others. In an illiquiditgrismission network, high SC industries
are the ones whose illiquidity can easily be affected by Hipidity of other industries, while
high IC industries are the ones whose illiquidity can easffect others’ illiquidity. As a result,
central (high SC or high IC) industries tend to play a majoe fial network spillovers, compared
to those that are isolated from othérkalso assume a neighbour effect: being affected by high SC
industries makes an industry more likely to be a high SC itrgiuand affecting high IC industries
makes an industry more likely to be a high IC industry as wlllus, an industry’s centrality also
takes its connected industries’ centralities into accosiaring the characteristics of what kind
of neighbours it is connected to in terms of the role in neknapillovers. Implications of influ-
ential centrality in network analysis have drawn growintgation in the literature on financial
systemic risk. For example, Acemoglu et al. (2012) and Aagimet al. (2015b) use asymmetric
network structures to show the possibility that aggregatedhtions may originate from idiosyn-
cratic shocks to high IC firms. However, research on seesi@ntrality is missing in the existing
literature on financial network. | argue that SC is least gsoitant as IC in terms of asset pricing.
In this paper, | provide a comprehensive analysis of seresttentrality and influential centrality
simultaneously in a directed illiquidity network context.

Intuitively speaking, illiquidity spillovers would leadhé illiquidity of a central industry to co-
vary with that of its connected neighbours and neighbouegjimbours across different horizons
due to illiquidity spillovers, thus long run returns of therfiolios that contain these central stocks
may be more volatile due to weak diversification of the ligtyidisk across different horizons.
Since a high SC industry’s illiquidity is easily affected the illiquidity of other industries, in-
vestors will demand a premium for holding this high SC stoskagents demand compensation
for not being able to use this stock to diversify the liquidiisk of others. Similarly, since it is
difficult to find other stocks to diversify a high IC industsyiquidity risk as the high IC industry’s

illiquidity would easily affect others’ illiquidity, the igh IC stocks should also earn a premium.

4An industry is isolated in a network means it is not connetbeahybody in this network.

80



The goal of this paper is to investigate whether such iltlgyicentralities (SC and IC) are risk
factors in asset pricing where industries are connected itliquidity network. | resolve this is-
sue by examining the cross-sectional relationship betileilliquidity centralities and expected
returns. Based on the argument stated above, my conjectilnat isentral stocks will earn higher
average returns. The IC measured from other economic nietwas already been documented
as a risk factor in recent literature on network and assetni(see, e.g., Buraschi and Porchia
(2012) and Ahern (2013)), but the result about SC is stillsmig. Indeed, the empirical result in
this paper provides strong evidence to support my conjedhat both SC and IC industries do
earn higher average returns. Interestingly, my robustoiessk suggests the effects of SC are even
more robust than IC.

In this paper, illiquidity spillovers, network centraé and cross-sectional expected returns are
to be explored together. To verify my previous conjecture n@ed a new analytical procedure that
includes four main steps: i) measuring industry’s illigtydii) estimating the illiquidity transmis-
sion network among different industries, iii) calculatiogntralities in the illiquidity network, and
iv) examining the cross-sectional relationship betwelauildity centralities and expected returns.

First, liquidity has many dimensions; this paper focuses aiimension associated with bid-
ask spreads in stock markets, which reflects the difficulosticof stocks’ transactions. | use
Corwin and Schultz (2012)’s bid-ask spreads estimate tounedisms’ daily illiquidity. Industry’s
illiquidity is measured by the simple average of the indiatibid-ask spreads estimates of the firms
that belong to this industry.

Then adapting the financial network estimation techniquggested by Billio et al. (2012)
and Dufour and Jian (2016), | use a Granger-type measurditoats the directed relationships
between every pair of industries in the stock mafkétidentify the directed illiquidity spillover
from industry A to industry B by testing whether the margietiéct of industry A's past illiquidity
on industry B’s current illiquidity is positive. The estineat illiquidity transmission network can
be represented by an adjacency matrix.

Once we have the estimate of the adjacency matrix of theuidity transmission network, |
take it as given and use Bonacich (1987)’s generalized eggptow centrality measure, which is

built on the neighbour effect assumption, to calculate stdess’ sensitive centralities and influ-

5Actually, | focus on the industry level just for feasibiliof implementation.
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ential centralities in the illiquidity network. | re-estate industries’ centralities each year by the
subsample in that year, then | obtain the annual series (126385) of industries’ centralities (SC
and IC). In fact, high SC and high IC tend to coexist and areigters in an industry. | find that
industries’ illiquidity sensitive and influential centitads are positively correlated in time-series
and in cross-section.

Following the classic procedure used by Fama and Frencl2j1B&amine the cross-sectional
relationship between the illiquidity centralities and egfed returns at portfolio level as well as at
industry level. Sorting industries by their respective S ¢&C at the beginning of each year, |
form portfolios in 10 deciles based on SC and IC, respectivéigd that with the portfolios rebal-
anced annually, average return differences between inesigt the highest and lowest SC deciles
and average return differences between industries in tteebt and lowest IC deciles exceed 4%
per year. The corresponding Fama-French-Carhart founifadphas also exceed 4% per year.
Both the return differences and the four-factor alpha difees are economically and statistically
significant at all standard significance levels. Not sumpgly, industries’ centralities have relation
with some well-known risk factors. For example, high SC stdies tend to be those industries
with small average firm size and high average book-to-maakédtlow liquidity. To ensure that
it is not these characteristics, but the illiquidity cefitias (SC and IC), that drive the return dif-
ferences documented in this paper, | perform a battery @friaite sorts and re-examine the raw
return and alpha differences. These results are robustrinat® for market-beta, size, book-to-
market, momentum, liquidity and idiosyncratic volatilifgesults from cross-sectional regressions
corroborate this evidence. The risk premium between thedsigand the lowest deciles of SC
and the premium of IC estimated by the Fama-MacBeth two-st@peplure are approximately 9%
per year and 12% per year, respectively. A robustness cleckfferent subperiods (1970 - 2015,
1980 - 2015, 1990 - 2015 and 2000 - 2015) suggests the effie8 are even more robust than IC.
In short, the illiquidity centralities (SC and IC) do earnimiams in the cross-section of expected
returns.

The rest of this paper is organized as follows. Section Z2udises the contributions of this
paper relative to related literature. Section 2.3 propasesw analytical framework for empirical
studies. Section 2.4 provides the univariate portfolieeleanalysis, the bivariate analysis and

industry-level cross-sectional regressions that examinemprehensive list of control variables.
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Section 2.5 makes a short conclusion.

2.2 Related Literature

This paper contributes to four strands of the literaturefingncial systemic risk with network
analysis and its asset pricing implications, ii) commawah liquidity, illiquidity contagions and
illiquidity spillovers, iii) gradual information diffusin, and iv) financial network estimation.

The first stream studies financial systemic risk with netwarklysis and its asset pricing im-
plications. As Andersen et al. (2012) mention, modern netilgeory can provide a unified frame-
work for systemic risk measures. For example, Acemoglu.g@all2), Elliott et al. (2014) and
Acemoglu et al. (2015b) show that market architectures magtfon as a potential propagation
mechanism of idiosyncratic shocks throughout the econosigny of the efforts in this stream
are concentrated on studying the effect of influential @ityrbecause high IC firms (or sectors)
are very likely to be a source of market turbulences. Moggdby this intuition, Buraschi and
Porchia (2012) and Ahern (2013) conduct empirical analysiBrms’ fundamentals networks and
on input-output networks, respectively, and find evidernz supports the theory implications.
They document that high IC firms do earn higher expectednsturhis paper differs from theirs
in two aspects. First, | stress that sensitive centraligit Isast as important as influential centrality
in terms of asset pricing. Sensitive centrality and inflismentrality can be seen as twin concepts
that built on directed network structures, but respectieblaracterize nodes’ importance in a net-
work in distinct directions. As discussed before, both Hgghand high IC firms should earn risk
premiums according to their network implications. In thegppr, | provide a comprehensive anal-
ysis on high SC and high IC industries. The result relatetsIconsistent with the implication
of Acemoglu et al. (2012) and Acemoglu et al. (2015b)’s tlggnrasset pricing, while SC turns
out to be a more robust risk factor than IC in explaining cresstional returns and is thus of great
importance as well. Second, | focus on a well-known riskquildity risk, and its transmission
structures. The illiquidity network structure is direcitdientified by illiquidity spillovers. Thus the
interpretation of the network effects in terms of risk spiltrs is more straightforward.

The second stream of literature studies commonality inidity illiquidity contagions and

illiquidity spillovers in financial markets. Liquidity halseen shown to covary strongly across
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stock§ and commonality in liquidity can influence expected retdrnBoth illiquidity comove-
ments and illiquidity spillovers may describe the phenoameof covaried illiquidity across stocks.
But illiquidity comovements characterizes the contempeoas relationship among cross-sectional
illiquidity, while illiquidity contagions and spilloverfocus more on the relationships across differ-
ent horizons. Cifuentes et al. (2005) explore liquidity risla system of interconnected financial
institutions and find contagious failures can result fronakbshocks. Oh (2013) presents a model
in which the contagion of a liquidity crisis between two noaficial institutions occurs because
of learning activity within a common creditor pool. Cespa &wmdicault (2014) show that cross-
asset learning generates a self-reinforcing positiveiogiship between price informativeness and
liquidity, which can lead when a small drop in the liquidity ane security can, through a feed-
back loop, spill over and result in a large drop in marketitigfy. Longstaff (2010) conducts an
empirical investigation into the pricing of subprime assatked collateralized debt obligations
(CDOs) and finds that strong evidence of contagion in finamséakets was propagated primarily
through liquidity and risk-premium channels. These stsigi@vide theoretical and empirical evi-
dences of why illiquidity can spill over and cause contagionfinancial markets across different
horizons. In fact, illiquidity spillovers can happen evéthiere is no contemporaneous illiquidity
comovement, and vice versa. The main departure of this gegrarthis literature is primarily in
the emphasis on the network structure of illiquidity tramssions. Specifically, | focus on the asset
pricing implications of the heterogeneity of illiquiditp#lovers.

The third stream of the literature studies gradual inforamatliffusion in financial markets.
It has been documented that economic links between firms exare ss the channel of gradual
diffusion of information. Individual firm’s returns, retarvolatilities and credit spreads can be
predicted via firms’ linkages (see Cohen and Frazzini (2608jzel et al. (2008), Menzly and
Ozbas (2010), Aobdia et al. (2014), Gencay et al. (2015)uddierque et al. (2015) and Gencay
et al. (2016) among others). This literature implies po&detfects of network structures on asset
pricing, since they find that firm’s returns can be predictgthle returns of the firms it is connected
to. Actually, gradual information diffusion may also prdeia channel for risk spillovers.

The fourth strand of the literature studies the estimatiofimancial network structures. After

6See Brockman et al. (2009), Hameed et al. (2010), Karolyli é€2812), Koch et al. (2016) among the most recent
studies.
’See, e.g., Pastor and Stambaugh (2003) and Acharya andsBe2005).
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all, most of financial relationships in financial markets latent and need to be estimated from an
appropriately identified model. Billio et al. (2012) use theafger noncausality testing to meausre
connectedness in financial markets. Hautsch et al. (2018sunes the downside risk relation-
ship from A to B by estimating the marginal effect of the VahteRisk (VaR) of A's returns on B’s
returns. Diebold and Yilmaz (2014) and Dufour and Jian (2@t6pose general network measure-
ment frameworks to measure directed financial relatiorsshipthis paper, illiquidity networks are
estimated by a Granger-type procedure that identifiesuitlity transmissions by measuring the
illiquidity prediction among industries. This method isline with Billio et al. (2012) and Du-
four and Jian (2016). We share the same estimation logicidifistry A's illiquidity transmits to
industry B, then industry B’s illiquidity can be predicted mydustry As illiquidity? However,
measuring network centrality also requires positive spdls: if industry As illiquidity transmits

to industry B, a higher current illiquidity of industry A shiguincrease the future illiquidity of in-
dustry B. Therefore in this paper, | estimate the direct ¢ffethe illiquidity transmission network
by testing positive prediction effects. Causality at mudtihorizons could measure the illiquid-
ity spillovers from one industry to another while simultanesly considering direct and indirect
effects (see, e.g., Dufour and Jian (2016)). But the adjgceratrix representing the underlying
network structure in terms of all bilateral direct effecsufficient to calculate network centralities
when we use eigenvector centrality measure that will baidsed in the next section. So | estimate
the direct effect that is measured by forecasting at hortwa if industry A's illiquidity transmits

to industry B, a higher today’s illiquidity of industry A shiglincrease tomorrow’s illiquidity of

industry B.

2.3 Analytical Framework

In this section, | provide an analytical framework to formmaland quantify illiquidity centrality
for empirical analysis. | use an adjacency matrix to repreasegeneral illiquidity transmission
network. Since any illiquidity transmission has directidrcategorize network centrality by: i)

sensitive centrality, which measures how sensitive is &no@ random shock in a network; ii) in-

8Goyenko and Ukhov (2009) also use a Granger-type procedwstudy the illiquidity spillovers between stock
and bond markets.
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fluential centrality, which measures how influential is a@iedhock affecting others in a network.
Given directed network structures represented by an adjgcmatrix, | use Bonacich (1987)’s

generalized eigenvector centrality to measure nodes’ or&tgensitive centrality and influential

centrality. Note that illiquidity transmission network®datent, | use Corwin and Schultz (2012)'s
bid-ask spreads estimate to measure firms’ daily illiqyiditd apply a specification method that
is similar to Granger causality measures to empiricallyidg directed illiquidity network struc-

tures.

2.3.1 llliquidity Transmission Network

Network analysis can be used to model and explain financigbgions. For example, Allen and
Gale (2000) show that the possibility of contagion deperndsmgly on the completeness of the
underlying network structure. For the complete networkwah@n Figure 2.1a, individuals can
be insured by each others following Lucas (1977)’s divaraifon argument, such that microeco-
nomic shocks would average out and thus have negligiblecggtg effects. For the incomplete
network shown in Figure 2.1b, idiosyncratic shocks may pgate throughout the entire system

and an individual problem can cause a systemic failure.

A B A B
D C D C
(a) Complete Network (b) Incomplete Network

Figure 2.1: Financial Contagion and Network Structures

In this paper, | focus on illiquidity spillovers. Industsieilliquidity may transmit to other
industries via an illiquidity network. | examine financiaétaork structures in at industry level
and focus on industries’ centralities in their illiquidigtwork. Sensitive centrality (SC) measures
the degree of a node being affected by others: how sens#timendustry to a random shock in
a network. In Figure 2.2a, industry A is a high SC firm as illdjty from other industries can

directly transmit to it. Influential centrality (IC) meassréhe degree of a node affecting others:
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how influential of the shock of an industry affecting otherghis network. In Figure 2.2b, industry
Ais a high IC industry as its illiquidity can directly trandrto all other industries. Note that a high
SC industry is not necessarily low IC. Figure 2.2c shows a wedmge industry A is both high SC
and high IC. I call it absolute centrality (AC). In Figure 2.86quidity from any other industries
can directly transmit to industry A, meanwhile, industrg Aliquidity can also directly transmit to
all other industries in this network. Intuitively speakjran industry being affected by a high SC
industry tends to be sensitive central as well. In Figur@2ridustry C is a high SC industry and
it affects industry A. llliquidity can easily transmit todastry C and then spillovers to industry A
via industry C. Thus industry A is also a high SC industry dumtlustry C being sensitive central.
Likewise, an industry affecting a high IC industry also terd be influential central. In Figure
2.3 industry As illiquidity can transmit to every industhy this network: directly to industry C
and indirectly via industry C. Industry A is high IC since iradity C is relatively influential central
in the rest of the network. In this sense, our illiquidity tratity (SC and IC) has simultaneously

taken directed direct effects and directed indirect eff@wip account.

B> B> B>
Bl_’A‘_BE} Bl<—A—>B3 Bl<—>A<—>83
Ba Ba Ba
(a) Sensitive Centrality (b) Influential Centrality (c) Absolute Centrality

Figure 2.2: Network Centrality

<—H<— >

(a) Affected by a sensitive central industry (b) Affecting a influential central industry

Figure 2.3: Neighbour to a high sensitive (influential) cehindustry
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In view of asset pricing, both high SC and IC industries’ kare not desirable assets to
hedge against a deterioration in investment opportunitiggh SC stocks tend to have low liquid-
ity once others experience illiquidity during bad times.r Bgh IC stocks, their illiquidity may
spread to the whole financial network and cause market-wWigeidity and aggregate turbulences.
Influential centrality could also be viewed as a source ofkefabeta (see Ahern (2013)). Thus,
as a “victim” of the illiquidity of others and a “villain” of rarket turbulences, high SC stocks and
high IC stocks should both earn higher expected returnshisrpaper, | will empirically examine
whether illiquidity network centralities (SC and IC) arekrfactors priced in cross-sectional stock
returns. For now, | use a simple network setting to furthesirate the intuition of why high SC

and high IC firms should earn premiums, even if there is noaigleturn comovement.

Example 2.3.1.Suppose there are only three as$etg k) in the market where investors are risk-
averse. Asseits illiquidity transmits to assef, but they are independent from asketin this
network as shown in Figure 2.4, asseind assej are connected, and asseis isolated. Thus,
asset is a high IC asset as it affects asgptaisset] is a high SC asset as it is affected by asset
assek is neither high IC nor high SC asset as it is isolated with fhikosers from assetto asset

j. | compare assdtwith asset and asse}. Assetk is a benchmark asset in this example.

i )——(1]

k

Figure 2.4: Simple network with high SC, high IC and isolatedes

| assume the return of asdetat timet, Ry, is independently drawn from the standard nor-
mal distributionN(0,1). For asset, its return at time, Ry, is also drawn independently from
N(0,1). The return of assej at timet, Rjt, is correlated toR;_; as asset’s illiquidity at
timet — 1 can transmit to ass@ts illiquidity at time t. Without loss of generality, | simply let
Rjt = Rt—1. In this case, they all have the same expected retu(R; E= E(Rjt) = E(R«) = 0;
and the same variance of returns: \Ry) = Var(Rjt) = Var(R¢) = 1. Moreover, there ex-
ists a financial spillover(i — j), but no contemporaneous comovement of illiquidity or nesur
Cov(Rt, Rjt) = Cov(R«, Rjt) = Cov(R¢,R«) = 0. Given the size (number of chosen assets) of

portfolios, all of these equal-weighted portfolios seerbécequivalent to investors. However, this
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is not true because the spillover from asstt assetj does play a big role in affecting long run
returns.

Suppose investors can only update their portfopp dvery two periods and let's assume the
interest rate is zero for simplicity; investors will be cenced about the average return over two
periods 3(RP+RP, ), instead of the current returRy’. Now, we consider the cases when investors
have to hold a given assetz=1, j,k, and are randomly assigned another asset with equal proba-
bility of 0.5 at the beginning of day | denote this random two-asset portfolio(@s). Investors
hold the realized portfolio ofz, -) over dayt and dayt + 1.

There are three possible portfolios with two assétg:), (i,k) and(j, k), whose corresponding
returns on day are denoted bR/, Rk and R, respectively, wher®' = 3(Ry +R;,), RK =
%(Rit +Ry) and Rtjk = %(Rjt + Ry ). For example(i,-) implies investors have to hold a random
portfolio composed by assktvith probability 1 and either ass¢br assek with equal probability
0.5. At the beginning of day, the realized portfolio could bg, j) or (i,k), then investors hold the
realized portfolio over 2 periods: daynd dayt + 1 and obtain the average retw}(‘R{' + R{'H) =
%(%(dj + Rij+1) +3(RK+RK ) = $(2R¢ + Rjt + R + 2Rit11 + Rjt4+1+ Rut+1). Similarly, the
average return of holding assetor sure is%(Rtj' + Rtj'H) = £(2Rjt + Rt + R+ 2Rjr11+ Rip1 +
Rkr1) and the average return of holding askéor sure is%(R{" + Rt"'H) = %(ZRkt + R + Rjt +
2R¢t+1+Rit+1+Rjt+1).

e The random portfoligk, -) is superior to the random portfolig, -):
The expected average return(&f-) over two periods and the expect average returfj of
over two period are equal: (B(R¢ + R, ;)) = E(3(R + Rtj;rl)) = 0. But the variance
of the two-period average return ¢&,-) is less thar(j,-): Var(3(R¢ + R ;) = £, while
Var(%(Rtj' + R[j'H)) = 2. Thus, the high SC assgtis less attractive to investors than the
isolated assek, because assgtwill carry the shock from asseton dayt to dayt + 1;
this results in the portfolios with assethaving higher positive correlation across different

periods, which increases the variance of return of holdsseg in their portfolios.

e The random portfolidk, -) is superior to the random portfoli@, -):
The expected average return(&f-) over two periods and the expect average returfi,of

over two period are equal: (R + R, ;)) = E(3(R' +R!",;)) = 0. However, the variance
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of the two-period average return @£, -) is less thar(i,-): Var(3(R¢ +R¢.;)) = £, while
Var(3(R + R ;)) = 2. Thus, the high IC asseétis less attractive to investors than the
isolated assel, because assetwill transmit its shock on day to other(s) on day + 1;
this results in the portfolios with assehaving higher positive correlation across different

periods, which increases the variance of return of holdssgtin their portfolios.

In summary, the isolated asdets more attractive to investors than the high SC agsatd
the high IC asset, thus investors would demand compensations for holding 8§ and high
IC assets. In fact, the risk diversification argument in silaportfolio theory requires weakly
correlated assets, such as the isolated &ssdhis example. Therefore, high SC or high IC assets

may not be considered as desirable components in a poriti@dioetwork environment to diversify
financial risks in the long run. O

To model network structures mathematically, |1 use an ad@cenatrix to model all the di-
rect relationships in a network. Suppose there Mridustries in an illiquidity networkA =
[Aijli,j=1,...N is anN by N matrix indicating which pairs of industries have diredojlidity trans-
mission. We letdj; = 1 if and only if industryi’s illiquidity will directly transmit to industryj;
otherwise Ajj = 0 if industryi’s illiquidity does not directly transmit to industry. For example,

the network structures in Figure 2.1a and in Figure 2.1b earepresented by the matrices in Table
2.1 and in Table 2.2 respectively.

Table 2.1: adjacency matrix and the network structure imfe@.1a

o0 w>»

P RRO|>
Rrr,obRr |l
Rrokrrkr|0O
ORrrrR|UO

2.3.2 Eigenvector Centrality Measure

In network literature, there are some centrality measwemtige a node’s “central importance”

in a network from different aspects. Among them, | use theegaized eigenvector centrality
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Table 2.2: adjacency matrix and the network structure imfe@.1b

A B C D
A 01 0 O
B 0 0 1 O
cC 0 0 0 1
D1 0 0 O

measures proposed by Bonacich (1987) to better measurddilig spillovers centrality in stock
markets.

Given an adjacency matrix of a directed netwokks [A;j]i j—1.... N, whereN is the size of the
network.Ajj = 1 if and only if industryi affects industryj, otherwiseAjj = 0. Following Bonacich

(1987), we define industnys sensitive centralitySG, as the sum of values of a linear function of

the sensitive centralities of all the other industries #ftdct industryi:

1 N 1
SG = —SG) = Ajj —SG), 2.1
G j:g_l(a_‘_/\ C:]) JZ]_ ] <a+A C]) ( )

wherea > 0, A > 0. Being affected by a high SC industy¥SG is large) can increase indusiry
sensitive centrality$G) in this network. YA is the weight of one’s sensitive centrality measure
on others’. A smalleA means the influence of the neighbour effect is greater. Inengietwork,
we say industry is more sensitive central than indusiryf and only if SG > SG.

In matrix notation, leSC= [SG, ..., SGy]’, we have

(L—%N)SC:aNL (2.2)

wherel is anN x N identity matrix and is aN x 1 column vector of ones.

Whena =0, we have(l — %A’) SC= 0 thenSCis an eigenvector of the transpose of the adja-
cency matrixA with its eigenvalue\. If Ais an irreducible non-negative matrix, Perron-Frobenius
theorem states that the only eigenvector whose componentdlgositive is the one associated
with the biggest eigenvaluimax. In practice, we do require positive centrality measuresrder

to determine which nodes are more central in a network. Hehe@igenvector sensitive centrality

is the eigenvector associated with the biggest eigenvdldé o
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Whena > 0, it is simply the scale of the centrality vector. Withousdaf generality, we could
leta = 1. If Ais an irreducible non-negative matrix aads greater than the biggest eigenvalue

of A’ in magnitude, the sensitive centrality vector has the failhg representation,

1 \1
SC= (I — —A') Al

p
2
— Al + /\E(A’)ZI + (;) (A1 +... (2.3)

All elements in the sensitive centrality vect®C are positive as all the elements in equation (2.3)
are nonnegative andlis irreducible. Moreover, the parametetAlcan be interpreted as a proba-
bility and SCas the expected number of directed paths in a network aetivitectly or indirectly

to each individual.

To obtain a positive sensitive centrality vector from equraf2.3), the weight of one’s sensitive
centrality measure on others’/A, is at most YAmax, WhereAmax is the biggest eigenvalue of
A’ If we wish to put more weight on considering the effect of lggameighbour to a high SC (IC)
industry in a network, a greater weight parameték Should be selected. Therefore, in order to
capture the neighbour effect as much as possible | will facuthe eigenvector centrality measure
in empirical analysis hereafter.

Similar arguments apply to defining a industry’s influenti@htrality (IC). We define industry
i's influential centralityC;, as the sum of linear functions of the influential centraditof all the
other industries who are affected by industry

ICi = ; (a—{—%le): %Aij(a+/\ilcj). (2.4)
jiAT=1 =1
Affecting a high IC industryj (IC; is large) can increase industi'g influential centrality (Cj)
in this network. In matrix notation, lefC = [ICy,...,ICN], we have(l — +A)IC = aAl. The
eigenvector influential centrality is the eigenvector assted with the biggest eigenvalue of the

adjacency matriA.

Example 2.3.2.1n Figure 2.5, | show a small but complex network to illustrabw the eigenvec-

9Givena > 0, if 1/A > 1/Amax the equation (2.3) does not converge &is not well defined in this case.
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tor centrality measures, sensitive centrality (SC) and emftial centrality (IC), can point out the

central components in this network and quantify their degre

TN

B C

N7
D

E

Figure 2.5: Eigenvector centrality of a small but comple®oek

The network shown in Figure 2.5 can be represented by theejg matrix in Table 2.3. This
table also presents the calculated values of their respeetgenvector sensitive centrality and
eigenvector influential centrality. The most sensitivetcamode is D (0.57) because it is affected
by two main nodes B and C. Node A and node E are equally secosdigegentral (0.45) as they
are both only affected by node D. Node B and Node C are thedeasitive central (0.36) as they
are only affected by node A. In terms of influential centyalitode A is the most central (0.64)
because its effect can spillover to everyone in this netwbidde D is second most central (0.51)
as it can transmit node A's effect spilling via node B and nGde node E and back to node A. The
influential centralities of node B and node C equal (0.40hag bnly affect node D. Interestingly,

the influential centrality of node E is zero, because it af@o one in this network.

Table 2.3: adjacency matrix and eigenvector centralitysuess

A B C D E IC
A 0 1 1 0 0 0.64
B 0 0 0 1 0 0.40
C 0 0 0 1 0 040
D 1 0 0 0 1 051
E 0 0 0 0 0 0.00
SC 045 036 036 0.57 045
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2.3.3 Bid-Ask Spreads Measure for Illiquidity Risk

In general, illiquidity risk in financial markets is a finaatirisk that a given financial asset or
security cannot be traded quickly enough in the market witlhmpacting the market price. Lig-
uidity has many dimensions. This study focuses on a dimarassociated with bid-ask spreads.
In stock markets, the spread is the difference between tharia ask prices for a particular stock.
The bid price corresponds to the highest price the demardisiilling to pay; the asking price
corresponds to the lowest price the supply side is willingelh. In other words, the bid-ask spread
reflects the divergence of the demand side and the supplyosidestock. Wider divergence makes
the transactions more difficult to make, since investorsetiaypay more “spread cost” to buy or
sell a stock.

Thus, the level of the illiquidity risk of a stock increaseghiathe size of its bid-ask spreads.
The interconnections of industries’ bid-ask spreads cantbepreted as industries’ illiquidity risk
transmission network.

In this paper, | use Corwin and Schultz (2012)’s bid-ask spsesstimate, which only requires
stock’ daily high and low prices, to measure firms’ illiquidrisk. Moreover, since tick data is
not available before 1990s but We assume that there is adspfed%. Because of the spread,
observed prices for buys are higher than the actual valug$Sk2)%, and observed prices for
sells are lower than the actual values by (S/2)%. If we furttgsume that the daily high price is
buyer-initiated and the daily low price is seller-initidte¢hen we will haveH© = HA(1+S/2) and
L® = LA(1—S/2), whereHO(LO) is the observed high (low) price amt*(L?) is the actual high
(low) price. Following Corwin and Schultz (2012), the bidkapread estimate on days

2(e"—1)
1469 7

5 2
V2B v B HO HOY\ 72 B max{HP . HC}
wherea =357~ a2z P=|In ﬁ +[In (L_Ioﬂ andy= in mmg.éi.,Lgt)} '

This bid-ask spread estimate has several advantages fagnapirical analysis. First, this

S = (2.5)

estimate is very easy to compute. No optimization probleededo be solved. Second, this
estimate only requires the daily observations of high pand low price. High price and low

price are available in almost all stock databases. Thieldtily bid-ask spreads for any given
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stock can be estimated from low-frequency (daily) sampkeolations and high-frequency tick
data is not available before 1990s. Fourth, Corwin and Szt{2@12) document that their bid-
ask spread estimate provides the best approximation toithask spreads computed by high-
frequency tick data. This liquidity measure enable us tacammany problems (e.g., limited time-
series observations in datasétand incomparable liquidity measure across different se'foif

we other alternative measures.

2.3.4 Granger Causality and Network Estimation

Once we have firms’ estimates of their respective daily Isklspreads, we want to uncover the
underlying network structures of how firms’ bid-ask sprespdl over to each other. Following
Billio et al. (2012) and Dufour and Jian (2016), this papeisws&ranger-type procedure (see, e.g.,
Granger (1969) and Sims (1972)) to identify the existenadireicted relationships between every
pair of nodes in the illiquidity risk network.

To identify the dynamic structures of the underlying illidily transmission network, | divide
the whole daily panel sample into annual subsamples. Sepipogeary we havety days in
this annual subsample, and we ha¥efirms’ estimates of their respective daily bid-ask spreads:
[Sit, S, ...,Sth]tTil. | assume the illiquidity risk network structure is fixed iach given year but
can vary year by year. In yegrthe network structure can be represented bigoy N, adjacency
matrix: AY = [Aiyj]i?j:]__‘m’Ny. WhereAlyj = 1if and only if firmi’s bid-ask spreads can affect firjis
bid-ask spreads; otherwis@;‘fj =0.

To estimate the directed relationship from firro firm j, Ajj, | use the following regression

model,

Sit = Bo+BiSt,p+ BjSit,p+ BzZp+Eit, t=1..T (2.6)

whereS;; is firm j’s spread on day, St,p = [St—p, ..., St—1]’ is the past recer days’ observations
of firm i's spreads, an@&: , = [Sjt—p, ..., Sjt—1]’ i the past recen days’ observations of firn's
spreads.Z; p = [Zt%p, ...,Ztsjp]’ Is the past recenp days’ observations of state variableszﬁp =
(28,28 4] fors=1,...S B is a scalar parametef; is a row vector correspond & p, f3;

is a row vector correspond 8 , and 3z is a row vector correspond @ . Then the general

OHigh-frequency trading data.
L iquidity measures that computed by trading volume.
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Granger-type procedure for identifying network structunecomes a testing probleiy(: i =0,
Hi: B #0):

1, rejectHp
A}‘j = (2.7)

0, can notrejecHy

Some notes of caution are needed here. First, selectirg\sahblesZ is important. One
of the drawbacks of using the bilateral Granger noncaysagting in network estimation comes
from spurious effects. If the regression model in equat@®)(does not include the common
factor(s) that are orthogonal to firp's past spreads but correlated to firspast spreads and firm
j’s current spread, we may rejddg even if there is no effect from firmto firm j.

Second, the choice of day lggs somewhat arbitrary, however, | suggpst 1 for the network
analysis in this paper. Settin@‘j = 1 implies we expect to see firiis spread yesterday will affect
firm j's spread today. Whep = 1, the noncausality implication is in line with the directesit
interpretation in network adjacency matrix. Moreover,entstat we only have one year daily ob-
servations in each subsample, thus srpalan increase the estimation precision, especially when
we add some state variables in the regression model. Fortiner measuring network centrality
requires positive spillovers: if firmis illiquidity transmits to firmj, a higher today’s illiquidity of
firm i should increase tomorrow’s illiquidity of firmi. Whenp; is univariate, a more appropriate
way to identify network structures is by testing whetfer- 0.

Third, in order to ensure the adjacency matrix to be irreolecithe underlying illiquidity risk
network should be strongly connected and not too sparses, Tihel significance level selected for
testing cannot be too low, otherwise the estimated netw@ Ioe too sparse.

Fourth, illiquidity is unobservable and | use the bid-adkneate to measure it. In the regression
both the regressand and regressors are estimated withthrsomay lead to biased estimates. To
deal with this measurement error issue we need to verify ata br some econometric assump-
tions that ensure valid statistical inferences, and thimeisond the scope of this paper and | leave

it for future research.
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2.4 llliquidity Network Centrality and the Cross-Section of Ex-
pected Returns

In the previous section | have discussed how to estimatpiitlity network structures by daily
bid-ask spread estimates and how to apply eigenvectoratiéynimeasure to measure nodes’ cen-
tralities in the network. This section explores the empirielation between the cross-section of
expected returns and the illiquidity centrality (SC and IE)r feasibility of implementation, the

illiquidity network and the cross-section of expected resuare examined at industry level.

2.4.1 Data

The first dataset includes all the stock information from@eater for Research in Securities Prices
(CRSP) for stocks traded in New York Exchange (NYSE), Amerigtock Exchange (AMEX),
and NASDASQ with share codes 10 or 11 from January 1963 tir@egember 2015. | use daily
stock high prices and low prices to calculate daily bid-gslead estimates. | use share prices and
shares outstanding to calculate market capitalizatiore firet 3 digits of the Standard Industry
Classification (SIC) code indicate the industry level. Indgstreturns and bid-ask spreads are de-
fined as the simple average of the returns and bid-ask spi@aitie stocks belong to the industry.
The second dataset is COMPUSTAT, which is used to obtain thiédapok values for calculating
the book-to-market ratios of individual firms and the bookatarket ratios of industry defines as
the simple average of the book-to-market ratios of indigidiums belong to the industry. The third
dataset is from the Kenneth French’s data library to obiakifree rates and four-factor portfolios
returns. These variables are defined in detail in the Appe@dand will be discussed when they

are used in the analysis.

2.4.2 llliquidity Network Centralities

Using daily stock high prices and low prices | calculateylbib-ask spreads estimat§g for in-
dividual stockiy that belongs to industriyon datet, with the adjustments suggested in Corwin and
Schultz (2012). For the purpose of this exercise | assumgsingli’s bid-ask spread estimate on

datet, S; = nl. Yici S, Wheren; is the number of stocks belong to industgn datet. In yeary, we
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haverty daily observations ofly industries’ daily bid-ask spreads estimatSs, Sy, ..., SNyt]tTil.
To identify Ny industries’ illiquidity network structuréy = [Al-yj]i7j:17m7Ny in yeary, | use the

following regression equation:
Sit = Bo+BiSt—1+BiSit-1+BzZ -1+ &, t=2,...Ty. (2.8)

The directed relationship from industiryo industry|j is specified asAij =1lifand onlyif3 > O;
otherwise,Alyj = 0. The state variablg;_1 includes: 1) average bid-ask spreads estimates of the
stocks belong to the major group of indusjrgn dayt — 1, where the major group is indicated by
the first two digits of SIC codes; 2) average bid-ask spreatimates of all stocks on day- 1.
By controlling major industry average illiquidity and matlkeverage illiquidity of industryj, a
positive marginal effect§ > 0) of the illiquidity of industryi on dayt — 1 on the illiquidity of
industry j on dayt can be safely interpreted as the illiquidity spillover framdustryi to industry

j: increase in the illiquidity of industrytoday leads the illiqudity of industryup tomorrow. | use
the simple t-statistic on one tail test at significance I@v&lto test whethe; > 0 in equation (2.8).

| repeat this procedure for every pair of industries. AftapiementingNy x Ny OLS regressions
and testings on equation (2.8), we find all the directedimahips in the network and uncover the
underlying illiquidity transmission network structureyeary, AY.

Given each yeay, we already have its adjacency mat&%by the procedure described above.
| calculate sensitive centralities and influential cerittydbr each industry by the eigenvector cen-
trality measure. More central industry will have a highentcality measure in cross-section, how-
ever note that the eigenvector is set to have unit norm, tigesieector centrality measures are not
comparable directly across different years. To fix this peol | rescale the industries’ centrality
measures for each year, such that the sum of squares ofriedusentrality measures in yegr
equals the size of the network in this yeblg). After rescaling, more central industries given a year
will still have higher centrality measures in cross-satis they are rescaled by the same weight.
In addition, centrality measures in different years are garable in terms of relative centrality
in their respective networks. If the centrality measure miradustry is greater than 1, which is
the root mean square of all industries’ centrality measurdise network, it implies the industry

is a relatively central industry, and vice versa. In any giyeary, we have industry sensitive
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centrality measureSGy) and its influential centrality measurkC(y) such thatNiy yi SC% =1and

Niy Si IC@ = 1. SGy = 1 (ICjy = 1) means (approximately) that industrgoes not have an unusu-
ally large or small degree of centrality in yegrirrespective of the number of industries in the
illiquidity network in yeary (Ny), and | call these industries as “middle-industry”.

Table 2.4 presents summary statistics of the empiricalildigtons of illiquidity network cen-
tralities in cross-section across different years from3L862015. The network centralities are
estimated for every year from January 1963 to December 20ére are 53 years from 1963 to
2015. In these years, there are 310 industries in illiquidétworks on average. Panel A presents
summary statistics for sensitive centrality. The yearlydrae of the medians of cross-sectional
sensitive centrality measures is 0.96, which is close torhidflle-industry. In contrast, for influ-
ential centrality in panel B the yearly median of the medi@ingoss-sectional influential centrality
measures is only 0.73, but the yearly median of the 75% deardf cross-section influential cen-
trality measures is 1.09, which is close to 1 of middle-indudt implies high influential industry
(ICi > 1) is in the minority in illiquidity networks in average yesarCompared to the sensitive cen-
trality median ‘max-min’ spread (1.29 = 1.71 - 0.42), theusfttial centrality has a wider median
‘max-min’ spread (2.54 = 2.71 - 0.17). In cross-sectionquiidity influential centralities have a
wider spread than illiquidity sensitive centralities. Bath sensitive centrality and influential cen-
trality, most of their cross-sectional empirical disttiloms from 1963 to 2015 are right-skewed and
have heavier tails than normal distribution. Right-skewetvork distribution is often documented
in economic and social network literature (see e.g., Jacksal. (2008)).

To investigate the empirical relation between sensitivetredity and influential centrality of
a given industry in illiquidity networks, Table 2.5 presefiie descriptive statistics of industries’
time-series correlations. | only calculate the time-sederrelations between sensitive centrality
and influential centrality for those industries have morantiiO years centralities observations
in sample. Then we have 395 industries’ sensitive cenalind influential centralities time-
series correlations and their respectprgalues to null hypothesis of no correlation. The average
sensitive centrality and influential centrality corredattis 0.42; the 25% quantile of the sensitive
centrality and influential centrality correlations is 0.3@ most (> 75%) industries thg-values
are less than 0.1. It means the changes of illiquidity seestentrality for most industries tends to

go with the direction of their changes in influential centyallf an industry gets more connections
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to others, its illiquidity will have more chances to affethers as well as being affected by others.

High SC (or IC) industries in the illiquidity network tend te high absolute centrality.

2.4.3 Univariate Portfolio-Level Analysis

Table 2.6 presents the equal-weighted and value-weighea@ge monthly returns of decile port-
folios that are formed by sorting the industries based oiiltgeidity network centralities (SC and
IC) respectively estimated in past calendar year. Central@gisures are estimated every year from
January 1963 to December 2014. Industry’s returns are lesédcliby the equal-weighted returns
of stocks belonging to the industry, and value-weightedfplios are the average industry returns
weighted by industry’s total market capitalizations. Feample, | estimate industries’ centrality
measures in 2000 with the sample from January 2000 to Deae20B@, and form the portfolios
from January 2001 to December 2001 based on the industaetatity measures in 2000. Portfo-
lios are rebalanced yearly. Portfolio 1 (Low SC (IC)) is thetfwdio of industries with the lowest
SC (IC) in the past calendar year, and portfolio 10 (high SC)(iCthe portfolio of industries with
the highest SC (IC) in the past calendar year.

In Panel A sorted by sensitive centrality, the equal-weidhtaw return difference between
decile 10 (high SC) and decile 1 (low SC) is 0.36% per month ¢4.p2r year) with a correspond-
ing Newey-West (1987) t-statistics of 3.66. In additionhe taw returns, Table 2.6 also presents
the intercepts (Fama-French-Carhart 4-factor alphas) tteregression of the equal-weighted
portfolio returns on a constant, the excess market rethensize factor, the book-to-market factor,
and the momentum factor, following Fama and French (1998)@arhart (1997). The differ-
ence in alphas between the high SC and low SC equal-weigluefblps is 0.45% per month
(5.40% per year) with a Newey-West t-statistic of 3.72. Tdifference is economically signif-
icant and statistically significant at all conventionaldkss Similar significant results also apply
to value-weighted portfolios. The value-weighted raw mnetdifference between decile 10 (high
SC) and decile 1 (low SC) is 0.38% per month (4.56% per year) avitorresponding Newey-
West t-statistics of 2.15; the difference in alphas betwberhigh SC and low SC value-weighted
portfolios is 0.49% per month (5.88% per year) with a NewegsW¥-statistic of 2.65.

Taking a closer look at the value-weighted average returdsaéphas across deciles, it is clear
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that they are not strictly monotonic increasing as SC irsgeaThe average returns of decile 1 to
9 are very close, in the range of 1.24% to 1.47% per month,dxeited10 (high SC) average return
jumps significantly to 1.82% per month. The alphas for the @irdecile are close too, from 0.61%
to 0.84%, but again the alpha for the decile 10 jumps up to%.28 similar pattern also exists for
equal-weighted average returns and alphas. The averaga etd alpha for the high SC decile
portfolio are significantly higher than those in decile 1 tdt9mplies investors dislike the high SC
portfolio industries’ stocks especially. The most seusittentral industries are the most exposed
to idiosyncratic illiquidity spillovers from other industs, thus investors may demand a premium
to hold these high SC portfolio due to with they too sensitovethers’ illiquidity.

In Panel B sorted by influential centrality, the equal-wégghraw return difference between
decile 10 (high IC) and decile 1 (low IC) is 0.40% per month (48per year) with a Newey-
West t-statistic of 3.19. The difference in alphas betwéenhigh IC and low IC equal-weighted
portfolio is 0.48% per month (5.67% per year) with a t-statief 3.35. Similar significant re-
sults also apply to value-weighted portfolios. The valusghted raw return difference between
decile 10 (high SC) and decile 1 (low SC) is 0.31% per month @.2ér year) with a corre-
sponding Newey-West t-statistics of 2.33; the differencalphas between the high SC and low
SC value-weighted portfolios is 0.31% per month (3.27% ma&rywith a Newey-West t-statistic
of 2.31. The difference of average returns and alphas batwigg IC and low IC portfolios are
economically and significant and statistically significant

Again, the average returns and alphas across deciles fegtra-weighted and value-weighted
portfolios are not strictly monotonic increasing as IC gases. But the high (low) IC portfolio still
has the highest (lowest) average return and alpha acrogesdelhe highest influential centrality
industries transfer their idiosyncratic illiquidity ris& many others and leave investors no place to
hide in the stock market. Therefore, the illiquidity risktiwholding the high IC portfolio is the
most difficult to be hedged. The high IC stocks should earreanprm.

Comparing Panel A and Panel B, we can see that the averagesretralphas spreads be-
tween high SC and low SC and the spreads between high IC ankClawe close. Moreover, the
patterns of average returns and alphas across deciled sgr&&C and by IC are similar. Note that
we have already found the changes of illiquidity sensiteetrality for an industry tends to go with

the direction of its change in influential centrality acrdgferent years in Table 2.5. Even though
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we find high SC and high IC portfolios earn significantly higheerage returns and alphas com-
pared with low SC and low IC portfolios respectively, thegeesads may be generated from similar
portfolios components. Table 2.7 presents the distribugfandustries across deciles sorted by SC
and sorted by IC. Thah row andjth column element in the table is the time-series averageeof t
percentage ratios of the number of the industries in paotfpsorted by IC, as well as in portfolio

i sorted by SC, over the total number of the industries in plotfosorted by SC. We can find
from the table that industries in high (low) decile portéslisorted by SC are more likely to be in
high (low) decile portfolios sorted by IC. The table entriesuand the diagonal are clearly greater
than those in off-diagonal positions. On average, 23.02querof decile 1's industries sorted by
SC belong to decile 1 portfolio sorted by IC; 28.89 percentegfileé 10’s industries sorted by SC
belong to decile 10 portfolio sorted by IC. In other words, @tti@/4 of the industries that belong
to the decile 1 (10) portfolio sorted by SC do not belong todeeile 1 (10) portfolio sorted by IC.
These industries could help to separate the risk assoacigtie C from the risk associated with IC
in their respective 10-1 portfolld. The return and alpha differences of the 10-1 portfoliogesbr
by SC and IC respectively are not generated from similarf@laytcomponents.

The 10-1 portfolios are constructed to capture the risk prenassociated with sensitive cen-
trality and influential centrality in the illiquidity netw&. In Table 2.6, we have found solid ev-
idence that the 10-1 portfolios sorted by SC and sorted byré&Crespectively both statistically
and economically significant, however, it is still possitilat we may just by “luck” pick up the
well-performed industries in decile 10 and poor-perfornretustries in decile 1 as our portfolio
formations are rebalanced annually. It is desirable forditrg strategy to utilize annually rebal-
anced portfolio as its transaction cost will be much lowantthe strategies rebalanced monthly or
even daily. But annually rebalancing does not provide mamodpnities for changes in portfolio
components. It would cast doubt on the reliability of theistecal properties for a trading strategy
with low turnovers.

To examine this issue more carefully, we look at the tramsithatrix of industries in portfolios
sorted by SC and sorted by IC. Table 2.8 presents the prolyafédinsition matrix of industries
in different decile portfolios in successive two years. Tierow andjth column element in the

10 by 10 table is the time-series average of the percentdigs & the number of the industries

12| ong the high decile portfolio and short the low decile polit.
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in portfolio i in yeary shifting to portfolio j in yeary+ 1 over the number of the industries in
portfolioi in yeary. If portfolio formations are purely random, industries aggially distributed in
different deciles; all the entries in the transition mashould equal 10(%). The range of the table
entries is from 7.22 to 12.44 for deciles sorted by SC in PAnghe range of the table entries is
from 5.64 to 15.44 for deciles sorted by IC in Panel B. The maxmprobability of an industries
stay at the same decile in two successive years is only 125144) for decile sorted by SC (IC).
In other words, it is quite unlikely that we pick up the we#fformed industries consistently in
decile 10 and poor-performed industries in decile 1 just logK” in Table 2.6 because most of
industries do not stay at the same decile in two successaes yand go to other different deciles
with approximately equal probability. Taking a closer loakthe tables, we can find the table
entries around diagonal are a little bit greater than thosefftdiagonal positions. In Panel A,
for example, the probability of an industry in decile 10 (HI§C) shifting to decile 1 (Low SC)
next year has the lowest value of 8.25% for industries fromildé.0, while the probability of an
industry in decile 10 (High SC) staying at decile 10 (High SQitry@ar has the highest value of
12.44%. Itis in line with our intuition since we expect a telaly low (high) SC industry in this
year will be more likely to be relatively low (high) SC indagtin next year. Similar arguments
also apply to deciles sorted by IC in Panel B. In conclusioa,résults documented in Table 2.6
appear to be trustworthy in term of statistics since indesin different deciles reshuffle enough in
each year, even though our annually rebalancing does naderonany opportunities for changes
in portfolio components.

In finance literature, market beta, book-to-market, ilicty, momentum and idiosyncratic
volatility are well-known risk factors of pricing returns the cross-section at firm level (see Fama
and French (1992), Fama and French (1993), Amihud (2008}pPand Stambaugh (2003), Je-
gadeesh and Titman (1993), Ang et al. (2006) among othetg)ugh | study illiquidity network
centralities at industry level, it would be important toastigate whether industries’ sensitive cen-
trality measures and influential centrality measures hakagion with these well-know risk factors.
To get a clearer picture of the component in portfolios sbiig sensitive centrality and influential
centrality, Table 2.9 presents summary statistics for tigeistries in the deciles sorted by SC in
Panel A and those sorted by IC in Panel B. Specifically, thestedyports for each decile the sim-

ple average across the years and across the industriesamisaharacteristics for the industries:
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the average firm market capitalization (in millions of dadldabeled FSIZE), the industry market
capitalization (in millions of dollars, labeled ISIZE) gmarket beta (labeled BETA), the book-to-
market (labeled BM), the average stock bid-ask spreads &sti(m percent, labeled SPREAD),
the average Amihud (2002) illiquidity measure (scaled b§; ldbeled RTV), the average industry
monthly return in the past calendar year prior to portfobonfiation (in percent, labeled MOM),
and the industry idiosyncratic volatility over the pastesalar year prior to portfolio formation
(labeled IVOL). Definitions of these variables are givenha Appendix.

In Panel A sorted by sensitive centrality, as SC increasesadeciles industry market capi-
talization increases but firms’ average market capitabmagxhibits little change in a range from
1.13 millions of dollars to 1.22 millions of dollars with lethan 10% in variation. In others words,
an industry’s sensitive centrality appears to be irrelevarits average firm size, but a bigger in-
dustry, which has more firms and has bigger market capitadizatends to have a higher sensitive
centrality measure. It can be partially explained by thé taat an industry with more firms would
have greater exposure to illiquidity spillovers in stockrkedt. In contrast to the conjecture that
sensitive centrality may serve as a source of market betamamdial network analysis (see Ah-
ern (2013)), industries’ market betas are almost the sanossdifferent deciles in our illiquidity
network. Momentum and idiosyncratic volatility are alsmakt the same across deciles. As SC
increases across the deciles, firms’ average book-to-inatie increases slightly. The value in-
dustries, which have higher average firms’ book-to-markébs, tend to have higher sensitive
centrality measure. In additon to Corwin and Schultz (2@1Rid-ask spreads estimate to measure
illiquidity, | also consider a more widely used illiquiditjmeasure proposed by Amihud (2002),
which measures firm’s illiquidity as the sensitivity of firsrabsolute returns to its trading volume
in dollars. Not surprisingly, those industries with higlsensitive centrality measures tend to have
greater bid-ask spreads and return-to-volume (RTV). Theselts may provide an explanation
of the value-premium known at least since Fama and Frend2]19%A motivation of the value-
premium is that value firms are consistent bad performersiiio@s of systemic downturns. It may
be because in the periods of systemic downturns value firexaare sensitive to market illiquidity
thus poor liquidity make their returns further lower durihgse periods.

In Panel B sorted by influential centrality, as IC increasgess deciles firms’ average market

capitalization decreases. Industries with small firms aoeensuitable distress vehicles than in-
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dustries with large firms whose relatively large tradingwoés could serve as temporary buffers
to slow down illiquidity propagatiod® Interestingly, the industry market capitalization extsbi
an U-shape across deciles. A bigger industry, which has rivone and small caps on average,
tends to has a higher influential centrality measure. As t@aases across deciles, industries’ mar-
ket betas decrease slightly (influential industries are ¢esrelated to market returns); industries’
book-to-market increases slightly (high book-to-markeltistries may be a source of systemic dis-
tress). Similar to the pattern across deciles sorted by SIC, excreases across deciles illiquidity
measures (SPREAD and RTV) are higher. Momentum and idioatinarolatility are also almost
the same across deciles.

Given these differing characteristics, there is some aontieat the 4-factor model used in
Table 2.6 to calculate alphas is not adequate to captureubedifference in risk and expected
returns across the portfolios sorted by SC and the porfalasted by IC. The 4-factor model does
not control for the differences in expected returns due ffer@inces in industry size or illiquidity.

In the following two subsections | provide different waysdeal with the potential interaction of

the illiquidity centrality measures with industry size diketo-market and liquidity.

2.4.4 Bivariate Portfolio-Level Analysis

In this section | examine the relation between illiquidigusality measures and future industry re-
turns after controlling for average firm market capitali@af industry market capitalization, market
beta, book-to-market, illiquidity measured by returnvtdume, average industry monthly return
in the past calendar year prior to portfolio formation, amduistry idiosyncratic volatility over the
past calendar year prior to portfolio formation. For examplcontrol for industry capitalization
by first forming 5 decile portfolios ranked based on industipitalization. Then, within each in-
dustry size decile, | sort industries into portfolio rankebsed on sensitive centrality and portfolio
ranked based on influential centrality so that decile 1 (delf) contains industries with lowest
(highest) centrality measures.

Table 2.10 presents average industry return across thetfptdaciles to produce decile port-

folio with dispersion in SC but with similar levels of the dool variables. For each column

13Buraschi and Porchia (2012) find small firms have higher infiaé centrality in a network connecting firms’
fundamentals.
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controlling variables, the equal-weighted average retliiference between the high SC and low
SC portfolios are still all economically and statisticadignificant. After controlling for firms’ av-
erage size, industry size, market beta, book-to-marketpembum and idiosyncratic volatility, the
equal-weighted average return differences between the3@and low SC portfolios are 0.29%
(3.14%), 0.32% (3.84%), 0.28% (3.36%), 0.28% (3.36%), ©29.48%), and 0.30% (3.60%) per
month (per year), with Newey-West t-statistics of 2.83,73.2.78, 2.83, 3.19 and 3.17, respec-
tively. The corresponding values for the equal-weighteerage risk-adjusted return differences
are 0.40% (4.80%), 0.39% (4.68%), 0.31% (3.72%), 0.37%404) 0.35% (4.20%) and 0.40%
(4.80%) per month (per year), with t-statistics of 2.71,72.2.93, 2.76, 3.46 and 2.67, which are
also highly significant. Note that the absolute return tditrg volume in dollars (RTV) illiquidity
measure proposed by Amihud (2002) is a much more popularevanetisure illiquidity in litera-
ture, for brevity hereafter | only use Amihud (2002)’s RTV asere to control the illiquidity risk
to make the results in this paper comparable to existingessddl | find that industries sensitive
centralities are positively correlated with industry sikeok-to-market and illiquidity (SPREAD
and RTV)in Panel A of Table 2.9. After controlling each ofskevariables (ISIZE, BM and RTV),
the average returns and alphas of the 10-1 portfolios sbgt&L remain significant. But the aver-
age return and alpha of the 10-1 portfolios decrease mast@introlling RTV. After controlling
RTV, the average return of the 10-1 portfolios decreases2@f0 per month (2.4% per year) with
a Newey-West t-statistic of 2.20; the alpha of the 10-1 ptid§ decreases to 0.29% per month
(3.48% per year) with a t-statistic of 2.11. Neverthelekssé results of high-low spread of the
portfolios sorted by SC are still economically and statadty significant. For the double sorted
value-weighted decile returns portfolios exhibit very gansignificant results, except after con-
trolling industry size the average returns of the 10-1 jpdidé decrease to 0.21% per month (2.52%
per year) with a t-statistic of 1.54, which is insignificaat €onventional significance levels.
Table 2.11 presents average industry return across thetfptdaciles to produce decile port-
folio with dispersion in IC but with similar levels of the cal variables. For each column control-
ling variables, almost all the equal-weighted averagernstand alphas of 10-1 IC portfolios are
economically and statistically significant, and are claséhbse sorting only by SC in Table 2.6.

After controlling for firms’ average size, industry size, ket beta, book-to-market, momentum

14The results of using SPREAD to control illiquidity risk arery similar.
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and idiosyncratic volatility, the equal-weighted averagturn differences between the high SC
and low SC portfolios are 0.35% (4.2%), 0.36% (4.32%), 0.33%2%), 0.34% (4.08%), 0.35%
(4.20%), 0.25% (3.00%) per month (per year), with t-stassdf 3.16, 2.99, 2.60, 2.85, 3.37, 2.11,
respectively. The corresponding 10-1 alphas are 0.45%%).40.45% (5.40%), 0.34% (4.08%),
0.44% (5.28%), 0.38% (4.56%) and 0.34% (4.08%) per monthy(gar), with t-statistics of 3.41,
3.11, 2.59, 3.21, 3.51 and 2.67, which are also both ecoradiyand statistically significant. The
only exception is the average return of the 10-1 portfoliera€ontrolling RTV, which is 0.16%
per month with a t-statistic of 1.42. But the 10-1 alpha aftartmlling RTV is 0.27% per month
(3.24% per year) with a t-statistic of 2.24, which is alsangigant. However, the 10-1 IC portfo-
lios are not always significant for the value-weighted midfreturns, even though their averages
returns and alphas are all positive.

In summary, these results indicate that for both the equadiwted and value-weighted portfo-
lios, the well-known cross-sectional effects at firm levedtsas size, market beta, book-to-market,
liquidity, momentum and idiosyncratic volatility can notgain the high returns to high SC in-
dustries, while similar robust results do not apply to thghhieturns to high IC industries except
for the case of equal-weighted portfolios sorted by IC. Sotteconstructed centrality measures

here have some valid interpretation.

2.4.5 Industry-Level Cross-Section Regressions

So far we have tested the significance of illiquidity semsitentrality (SC) and illiquidity influ-
ential centrality (IC) as determinants of the cross-seabibfuture returns at portfolio-level. The
portfolio-level analysis has the advantage of being naiupetric in the sense that we do not im-
pose a functional form on the relation between illiquidigntrality measures and future return. But
the portfolio-level analysis misses a large amount of imi@tion in the cross-section via aggrega-
tion. Moreover, it fails to control for multiple effects suttaneously. In this section, | examine the
cross-sectional relation between the centrality meaqi@€sand IC) and expected returns at the
industry level using Fama and MacBeth (1973) two-step regras.

| present the time-series averages of the slope coefficientsthe regression of industry re-

turns on sensitive centrality (SC), influential centralit@), market beta (BETA), average of logs
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of firms’ market capitalizations (FSIZE), log of industry rket capitalization, average of logs of
firms’ book-to-market (BM), illiquidity (RTV), momentum (MM), and idiosyncratic volatility
(IVOL). The average slopes provide standard Fama-MacBsth ter determining which explana-
tory variables on average have non-zero premiums. Montldgsesectional regressions are run

for the following econometric specification and nested ioeIs

Rity+1 =Aoty+A1tySCGy+ A2t ylCiy+ Azt yBETAi y + Aat yFSIZE y + A5 yISIZE;

+ A6t yBMiy+ A7t yRTViy+ Agt yMOMi y+ Ag yIVOL iy + &t y+1

whereR;t y+1 is the realized return on industiyin montht in yeary+1, the predictive cross-
section regression are run on the lagged values of SC, IC, BESKH; ISIZE, BM, RTV, MOM,
and IVOL, which are all calculated or estimated with the sknfif@m January to December in year
y. This setting assures the associated trading strategigasareced annually.

Table 2.12 reports the time-series average of the slopédideatsAi;y (i = 1,...,9) over the
624 months from January 1964 to December 2015 for all indhsstn the illiquidity networks
that are estimated annually from 1963 to 2014. The Newey\Atlisisted t-statistics are given
in parentheses. The univariate regressions show a poaietatistically significant relation be-
tween illiquility sensitive centrality and the cross-sentof future industry returns; and a positive
and statistically significant relation between illiquliinfluential centrality and the cross-section
of future industry returns. The average slopgy, from the monthly regressions of realized returns
on SC alone is 0.82 with a t-statistic of 2.05. The economigmitade of the associated effect is
higher than that documented in Table 2.6 and Table 2.10 éutiivariate and bivariate sorts. The
spread in average SC between decile 10 and decile 1 is 03B-0.57). Multiplying this spread
by the average slope yields an estimate of the monthly risknprm of 0.76% per month (9.12%
per year). The average slope,y, from the monthly regressions of realized returns on IC @lisn
0.69 with a t-statistic of 1.70. The economic magnitude efdalsociated effect is also higher than
that documented in Table 2.6 and Table 2.11. The spread laged¢C spread between decile 10
and 1 is 1.64 (1.96 - 0.32). Multiplying this spread by therage slope yields an estimate of the
monthly risk premium of 1.13% month (13.56% per year).

Conditional on 6 other variables (BETA, FSIZE, BM, RTV, MOM anddL), the economic
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magnitudes and the significance levelsAgf, and A, remain almost unchanged. The average
slope coefficient on SC}1y, conditional on the 6 control variables, is 0.88 with a tiste of
2.14; the average slope coefficient on K3,, conditional on the 6 control variables, is 0.79 with
a t-statistic of 1.95. Since we have found in Table 2.7 thaaB&IC are cross-sectional positively
correlated, our primary interest is the full specificatiotiv&C, IC, and the 6 control variables. In
this specification, the average slope coefficient on SC 3 @ith a t-statistic of 2.00; the average
slope coefficient of IC is 0.62 with a t-statistic of 1.92Theses results are very similar to those in
the univariate regressions.

In the last specification in Table 2.12, | exclude SC and IChanfull specification regression
to investigate the effect of dropping SC and IC to other cantariables in explaining the cross-
section returns at industry level. In the last specificattbe average slope coefficient on RTV is
0.81 and significant, while those average slope coefficisBRDV in the specification with either
SC or IC or both are smaller than 0.81 and statistically msicant. It implies the illiquidity
risk premium associated with RTV can be captured by SC andit@he illiquidity risk premium
associated with SC and IC is not captured by RTV.

The table shows that only SC, IC and MOM are consistently Bgamt under the regressions
of all specifications in the table. Many well-known crosstgmal effects at firm level such as
market-beta, size, book-to-market, liquidity, and idiosratic volatility are not robustly significant
in explaining the cross-section returns at industry levethe size effect measured by ISIZE is
significantly positive with a t-statistic of 2.10 only in thiell specification; the book-to-market
effect measured by BM is significantly positive only in thel fsihecifications excluding either
SC or IC; the liquidity effect measured by RTV is significanplgsitive only in the specification
without SC and IC. The signs of these effects are in line withs¢hdocumented in literature.
Note that these variables in this paper are measured attigdegel and renewed annually, return
dispersions associated with these variables could be simalio firms’ aggregations into industry
level. The momentum effect, however, is surprisingly ralaasndustry level.

As a robustness check for the significant effects of SC and &BleT2.13 presents the cross-

sectional regression results of the full specification nhadéer different subperiods (1970 -2015,

5Controlling SPREAD instead of RTV in the full specificatioadhlittle effect on the results. In such specification,
the average slope coefficient on SC is 0.94 with a t-statiéti: 18; the average slope coefficient of IC is 0.76 with a
t-statistic of 2.27.
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1980 - 2015, 1990 - 2015 and 2000 - 2015). SC is positive atidtatally significant at the level
of 0.1 in all subperiods. IC is also positive and statistjcalgnificant at the level of 0.1 in all
subperiods except the most recent and shortest subsamud p£2010 - 2015, while the mean
of coefficients for IC of 2010 - 2015 is still positive. Anothabservation is the effects of SC and
IC measured by their respective mean coefficients are evgerlan recent decades.

The clear conclusion is that the cross-sectional regresgpoovide strong corroborating ev-
idence for an economically and statistically significansipiee relation between the illiquidity
centrality measures (SC and IC) and future returns, comsigtiéh our conjecture that illiquidity
centralities (sensitive centrality and influential celiyqare an important idiosyncratic risk that
should be priced in financial markets, and they indeed eaknptiemiums in the cross-sectional
stock returns at industry level. Moreover, SC is a more rbhsk factor than IC in explaining

cross-sectional returns.

2.5 Conclusion

This paper proposes a new analytical framework to studyakres in an illiquidity transmission
network and its asset pricing implication in the cross4iseadf expected stock returns. | document
a statistically and economically significant relation beén lagged illiquidity centralities (sensi-
tive centrality and influential centrality) and future rets. This result is robust to controls for
numerous other potential risk factors. The result relatedftuential centrality is consistent with
the asset pricing implication of Acemoglu et al. (2012) amm@ioglu et al. (2015b)’s theory, while
| find sensitive centrality is an even more robust risk fathan influential centrality in explaining
cross-sectional returns. In summary, | find strong evidéhatthe illiquidity network centralities
(SC and IC) may be important risk factors in asset pricing wetwork structures of securities.
This paper differs from the existing literature studyingrooonality in liquidity, illiquidity
spillovers and contagions in that | consider illiquidityilgvers in a network environment with
focus on industries’ illiquidity interconnections, inatkof basing it on simple two-agents settings
or on contemporaneous correlation-based analysis. Merglbsonsider network centrality in two
directions: 1) sensitive centrality (SC), which measures dlegree of a node being affected by

others; and ii) influential centrality (IC), which measurbs tegree of a node affecting others.
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The existing literature related to financial network celitiras mostly motivated by the systemic

risk studies that suggest idiosyncratic shocks to an inflaefirm may cause aggregate market
failures, so it tends to only consider influential centyalitargue that sensitive centrality is at least
as important as influential centrality in terms of assetipgc Indeed, | find strong evidence in

illiquidity network to support this conjecture. 1 find thaCSand IC are positively correlated in

time-series and in cross-section and each adds to the etjplarof cross-sectional returns even
given the other measure.

The approach used in this paper can be applied to study mhayfatancial networks, such as
return network, volatility network, and credit-spreadvwetk. An interesting direction for further
research may be studying direct and indirect network effeca unified framework with the gen-
eral network measurement method proposed by Dufour and2@4r6). After all, the adjacency
matrix can only tell us about direct effects. If we want todstdinancial spillovers and propaga-
tions in depth, measuring indirect effects is also necgsgarthis paper | assume the illiquidity
network is unweighted. But weighted economic effects of famanspillovers could provide us
more insights to understand the strength of underlying Girshmetworks. Of course, different
network centrality measures have to be selected accoydih¢gave a detailed analysis of these

issues to future work.
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Table 2.4: Summary statistics of illiquidity network calities panels. Centrality measures are
estimated every year from January 1963 to December 2015n@aliescriptive statistics provide

characteristics of the empirical distribution of crosstsm centrality measures in a given year.
Row descriptive statistics provide characteristics of eatimn’s descriptive statistics across dif-
ferent years (1963 - 2015). Skewness is unbiased skew, égethre greater than O are right-
skewed; kurtosis is unbiased kurtosis using Fisher’s defimof kurtosis (kurtosis normal = 0).

Panel A presents summary statistics for sensitive cetyir&anel B presents summary statistics
for influential centrality.

Panel A: Sensitive Centrality

Cross-section Centrality Measures

count mean std min 25% 50% 75% max skewness kurtosis
count 53 53 53 53 53 53 53 53 53 53
mean 310.28 095 0.28 0.39 0.75 090 1.12 1.83 0.51 0.21
std 4287 0.05 0.13 0.14 0.15 0.12 0.04 0.30 0.40 0.59
min 222 0.81 0.15 0.15 035 054 1.01 1.44 -0.26 -0.74
25% 282 0.94 0.19 0.25 0.67 0.89 110 1.60 0.24 -0.14
50% 311 098 0.21 042 083 09 111 1.71 0.45 0.08
75% 332 098 0.34 052 086 097 1.14 2.09 0.80 0.43
max 393 099 059 062 0.88 1.00 1.24 247 1.69 2.99
Panel B: Influential Centrality
Cross-section Centrality Measures
count mean std min 25% 50% 75% max skewness kurtosis

count 53 53 53 53 53 53 53 53 53 53
mean 310.28 085 049 0.18 052 0.72 1.05 284 1.38 2.34

std 4287 0.10 0.14 0.11 0.17 0.17 0.14 0.62 0.53 2.22

min 222 0.41 0.22 0.00 0.05 0.11 0.26 1.62 0.27 -1.14
25% 282 0.82 0.41 0.12 0.41 0.63 1.01 246 1.09 1.16
50% 311 087 049 017 051 0.73 1.09 271 1.37 1.78
75% 332 091 057 023 065 0.84 1.12 3.18 1.54 2.55

max 393 0.98 091 044 084 097 135 492 3.57 11.94
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Table 2.5: Summary statistics of the time-series cori@tatof sensitive and influential centralities
of given industries. Centrality measures are estimated/gxear from January 1963 to December
2015. | only calculate the time-series correlations betwssnsitive centrality and influential cen-
trality for those industries have more than 10 years catigslobservations in sample. Column
statistics provide time-series correlations of any givetustry and itg-value to null hypothesis of
no correlation. Row descriptive statistics provide chamastics of each column’s statistics across

different industries.

corr  p-value

count 395 395

mean 0.42 0.09
std 0.19 0.19
min  -0.37 0.00

25% 0.32 0.00
50% 0.45 0.00
75% 0.55 0.07
max 0.82 0.96

113



Table 2.6: Return and alpha on portfolios of stocks sortedliguidity network centralities. Decile
portfolios are formed every year from January 1964 to De@¥r8b14 by sorting industries based
on the sensitive centrality (SC) in Panel A and based on theenfial centrality (IC) in Panel B.
Centrality measures are estimated every year from Janu&® tb9December 2014. Industry re-
turns are calculated by the equal-weighted returns of stbelong to the industry. Portfolio 1 (10)
is the portfolio of industries with lowest (highest) celiitias in the past calendar year. The tables
reports the equal-weighted and value-weighted averagémyaeturns, the 4-factor Fama-French-
Carhart alphas on the equal-weighted and value-weightetbpos, and the average centrality of
industries in the past calendar year. The last two rows ptdke differences in monthly returns
and the differences in alphas with respect to the 4-factond=Brench-Carhart model between
portfolios 10 and 1 and the corresponding t-statistics.rége raw and risk-adjusted returns are
given in percentage terms. Newey-West (1987) adjustedatissts are reported in parentheses.

Panel A: Sorted by sensitive centrality

Equal-Weighted Value-Weighted
Decile  Average Return 4-factor Alpha Average Return 4dmétpha  SC
Low SC 1.06 0.31 1.44 0.74 0.57
2 1.11 0.42 1.35 0.64 0.68
3 1.18 0.42 1.36 0.67 0.75
4 1.26 0.52 1.44 0.76 0.81
5 1.24 0.53 1.47 0.82 0.87
6 1.07 0.33 1.32 0.61 0.94
7 1.28 0.59 1.42 0.80 1.02
8 1.26 0.62 1.26 0.72 1.12
9 1.12 0.47 1.43 0.84 1.26
High SC 1.42 0.76 1.82 1.23 1.50
10-1 0.36 0.45 0.38 0.49
(3.66) (3.72) (2.15) (2.65)
Panel B: Sorted by influential centrality
Equal-Weighted Value-Weighted
Decile  Average Return 4-factor Alpha Average Return 4daélipha IC
Low IC 1.05 0.33 1.26 0.62 0.32
2 1.20 0.52 1.55 0.89 0.44
3 1.18 0.47 1.42 0.74 0.52
4 1.20 0.48 1.37 0.76 0.60
5 1.22 0.53 1.50 0.83 0.68
6 1.18 0.45 1.45 0.82 0.77
7 1.17 0.49 1.54 0.87 0.89
8 1.19 0.48 1.41 0.76 1.06
9 1.16 0.45 1.35 0.72 1.33
High IC 1.44 0.81 1.57 0.93 1.96
10-1 0.40 0.48 0.31 0.31
(3.19) (3.35) (2.33) (2.31)
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Table 2.7: Distribution of industries across deciles sbhg sensitive centrality and sorted by in-
fluential centrality. Centrality measures are estimatedyeyear from January 1963 to December
2014. Decile portfolios are formed every year from Janu&§41lto December 2015 by sorting
industries based on the sensitive centrality (SC) and basdldeoinfluential centrality (IC). Port-
folio 1 (10) is the portfolio of industries with lowest (hight) centralities in the past calendar year.
Theith row andjth column element in the table is the time-series averageegbércentage ratios
of the number of the industries in portfoljosorted by influential centrality, as well as in portfo-
lio i sorted by sensitive centrality, over the total number ofitfuistries in portfolia sorted by

sensitive centrality.

By influential centrality

By sensitive

centrality Low IC 2 3 4 5 6 7 8 9 High IC

Low SC 23.02 16.29 12.07 11.18 832 795 566 561 453 3.48
2 16.90 13,53 1294 1258 1057 798 8.18 6.04 511 4.28
3 1432 1215 1286 10.99 11.21 954 957 724 6.21 4.01
4 9.84 11.61 1289 11.64 12.13 10.87 10.05 7.19 7.29 4.60
5 8.64 1220 9.82 1054 1057 1152 10.15 11.29 7.29 6.10
6 8.15 9.22 1090 11.18 10.69 10.36 1257 10.84 8.36 5.84
7 5.25 849 845 11.13 10.81 1091 1142 1177 11.28 8.60
8 4.84 6.23 6.97 7.22 1087 1054 1221 1282 1295 13.47

9 4.34 477 691 594 734 851 1090 1298 17.38 19.05
High SC 3.01 388 472 612 6.06 6.87 794 1268 17.94 28.89
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Table 2.8: Transition matrix of industries in portfoliosra by illiquidity network centralities.
Centrality measures are estimated every year from Janué& tbDecember 2014. Decile port-
folios are formed every year from January 1964 to Decemb@b 2§y sorting industries based
on the sensitive centrality (SC) in Panel A and based on theenfial centrality (IC) in Panel B.
Portfolio 1 (10) is the portfolio of industries with lowegtighest) centralities in the past calendar
year. Theath row andjth column element in the table is the time-series averageeopércentage
ratios of the number of the industries in portfoliin yeary shifting to portfolio j in yeary+1
over the number of the industries in portfolio yeary.

Panel A: Sorted by sensitive centrality

To
From Low SC 2 3 4 5 6 7 8 9 High SC
LowSC 11.39 1058 11.05 1056 7.22 875 878 9.12 8091 8.25
2 10.90 9.04 996 9.78 979 981 819 877 8.96 8.96

9.95 8.98 1060 8.89 10.30 9.62 982 872 933 8.64
9.35 11.01 865 999 10.19 813 958 956 9.33 9.36
9.05 9.65 843 10.24 10.27 9.78 1041 9.10 9.13 9.04
10.00 979 942 901 906 887 1030 980 924 9.13
8.63 9.01 10.28 955 1043 8.28 10.06 9.18 10.50 9.67
8.78 843 837 951 944 1063 9.20 10.86 9.87 10.44
9 7.78 933 9.06 814 1026 9.67 946 10.33 1052 10.99
High SC 8.25 857 857 922 853 861 1013 11.33 10.19 1244

coO~NO Ol AW

Panel B: Sorted by influential centrality

To
From LowlIC 2 3 4 5 6 7 8 9 High IC
LowIC 10.86 11.20 11.28 10.77 9.83 9.86 10.07 7.41 6.52 7.54
2 10.87 11.64 10.74 9.74 1171 7.47 995 811 7.69 7.15

1292 985 1043 9.17 1058 845 889 939 7.62 8.07
9.42 1082 11.33 1055 9.73 894 8.64 8.60 8.47 7.94
1127 999 991 962 824 890 876 917 961 8.90
8.70 884 819 842 991 1049 950 11.03 9.80 9.81
869 11.38 851 849 948 958 990 858 1121 9.63
8.05 776 856 971 842 1091 10.14 1058 11.72 10.16

9 6.27 755 864 932 836 840 1150 10.85 11.34 13.09
HighIC  7.05 564 7.08 817 900 931 923 1228 1213 1514

co~NO O~ W
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Table 2.9: Summary statistics for decile portfolios sottgdlliquidity network centralities. Cen-
trality measures are estimated every year from January tBb@cember 2014. Decile portfolios
are formed every year from January 1964 to December 2015bggandustries based on the sen-
sitive centrality (SC) in Panel A and based on the influenealtality (IC) in Panel B. Portfolio 1
(10) is the portfolio of industries with lowest (highestntelities in the past calendar year. The
table reports for each decile the simple average acrosetrs gnd across the industries of various
characteristics for the industries: the average stock etadpitalization (in millions of dollars, la-
beled FSIZE), the industry market capitalization (in noifis of dollars, labeled ISIZE), the market
beta (labeled BETA), the book-to-market (labeled BM), theaage stock bid-ask spreads estimate
(in percent, labeled SPREAD), the average Amihud (2002)uiitlity measure (scaled by 4,0
labeled RTV), the average industry monthly return in thet pakendar year prior to portfolio for-
mation (in percent, labeled MOM), and the industry idiogwtic volatility over the past calendar
year prior to portfolio formation (labeled IVOL).

Panel A: Sorted by sensitive centrality

Decile  FSIZE($16) ISIZE($1F) BETA BM SPREAD(%) RTV(106) MOM(%) IVOL

Low SC 1.22 14.86 0.89 259 1.84 4.82 0.08 0.28
2 1.13 16.05 0.87 3.17 2.09 6.63 0.08 0.29
3 1.18 15.51 0.87 3.19 2.16 6.56 0.07 0.28
4 1.25 19.02 0.87 2.89 2.25 7.11 0.08 0.27
5 1.19 18.00 0.87 341 2.11 7.70 0.08 0.28
6 1.17 20.97 0.88 3.08 221 7.25 0.08 0.27
7 1.13 20.06 0.88 2.77 2.32 7.85 0.09 0.28
8 1.28 25.64 0.86 3.82 241 7.51 0.08 0.28
9 1.18 20.25 0.85 3.28 2.55 6.02 0.08 0.26
High SC 1.18 30.09 0.87 4.36 2.64 7.53 0.08 0.27

Panel B: Sorted by influential centrality

Decile FSIZE($16) ISIZE($1F) BETA BM SPREAD(%) RTV(10%) MOM(%) IVOL

Low IC 1.37 21.20 094 293 1.59 4.63 0.08 0.26
2 1.29 23.67 0.89 2.76 1.75 6.74 0.08 0.28
3 1.34 20.01 0.90 3.10 1.76 4.78 0.08 0.27
4 1.27 17.25 0.88 4.06 1.92 6.64 0.08 0.27
5 1.15 15.75 087 292 1.88 6.06 0.08 0.28
6 1.12 16.97 0.87 3.32 2.12 6.58 0.07 0.28
7 1.26 18.67 085 3.23 2.43 7.35 0.08 0.28
8 1.00 18.96 0.84 2.88 2.57 8.14 0.08 0.28
9 1.16 19.12 0.84 3.72 3.06 8.70 0.07 0.28
High IC 0.94 28.72 0.82 3.68 3.48 9.34 0.07 0.28
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Table 2.10: Returns on portfolios of industries sorted bysg®e centrality after controlling for FSIZE, ISIZE, BETABM, RTV,
MOM, and IVOL. Centrality measures are estimated every yean fJanuary 1963 to December 2014. Double-sorted, equghteel
and value-weighted decile portfolios are formed every i@ January 1964 to December 2015 by sorting industriesdas sensitive
centralities after controlling for average firm market ¢alzation, industry market capitalization, market bétagk-to-market, return-
to-volume, industry momentum, and industry idiosyncratatility. In each case, | first sort the industries in to itk using the
control variable, then within each decile, | sort industriieto 10 decile portfolios based on the sensitive cenigalibver the previous
calendar year so that decile 1 (10) contains industries thegHowest (highest) SC. This table presents average iryduettirns across
the 5 control deciles to produce decile portfolio with dispen in SC but with similar levels of the control variablel0-1 Return” is
the difference in average monthly returns between the H@laisd Low SC portfolios. “10-1 Alpha” is the difference in detor alphas
on the High SC and Low SC portfolios. Newey-West (1987) adui$-statistics are reported in parentheses.

Equal-Weighted Returns Value-Weighted Returns

Decile FSIZE ISIZE BETA BM RTV MOM IVOL FSIZE ISIZE BETA BM RTV MOM IVOL

Low SC 1.10 1.04 1.05 1.03 1.13 1.04 1.07 1.57 1.50 1.29 1.28 1.40 1.27 1.47

2 1.12 1.15 1.15 1.18 1.17 1.09 113 1.54 1.54 1.38 145 141 1.30 131
1.18 1.19 1.22 1.19 1.12 1.27 1.14 1.57 1.57 1.31 1.33 1.37 1.43 1.45
1.23 1.19 1.24 1.25 1.23 1.21 1.28 1.55 1.62 1.48 151 1.43 1.49 151
1.13 1.20 1.12 1.09 131 1.17 1.18 1.57 1.64 131 1.30 1.59 1.37 1.44
1.08 1.04 1.13 1.21 1.11 1.16 1.12 1.39 1.35 1.38 133 1.35 1.32 1.33
1.22 1.32 1.18 1.19 1.19 1.13 1.28 1.59 1.64 1.34 1.27 1.34 1.45 1.59
1.25 1.19 1.16 1.28 1.15 1.29 1.13 1.63 1.61 1.20 140 131 1.34 1.35

9 1.21 1.24 1.36 1.27 1.22 1.25 1.28 1.62 1.63 1.55 158 1.48 1.37 1.49
High SC 1.39 1.36 1.33 131 1.33 1.33 1.37 1.84 1.71 1.55 150 1.68 151 1.75

10-1Return 029 032 028 028 020 029 030027 021 026 023 029 024 029
(2.83) (3.27) (2.78) (2.83) (2.20) (3.19) (3.17)(2.05) (1.54) (1.94) (1.71) (2.41) (1.95) (1.85)
10-1Alpha 040 039 031 037 029 035 040038 029 034 033 039 031 040
(2.71) (2.97) (2.93) (2.76) (2.11) (3.46) (2.67)(2.41) (1.96) (2.46) (2.26) (2.41) (2.57) (2.10)
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Table 2.11: Returns on portfolios of industries sorted byustitial centrality after controlling for FSIZE, ISIZE, BETABM, RTV,
MOM, and IVOL. Centrality measures are estimated every yean fJanuary 1963 to December 2014. Double-sorted, equghtesl)
and value-weighted decile portfolios are formed every yean January 1964 to December 2015 by sorting industriesan influ-
ential centralities after controlling for average firm metrkapitalization, industry market capitalization, manketa, book-to-market,
return-to-volume, industry momentum, and industry idiasyatic volatility. In each case, | first sort the industrile$o 5 deciles using
the control variable, then within each decile, | sort indiestinto 10 decile portfolios based on the sensitive cétiesover the previous
calendar year so that decile 1 (10) contains industries theéHowest (highest) SC. This table presents average iryduettirns across
the 5 control deciles to produce decile portfolio with dispen in SC but with similar levels of the control variablel0-1 Return” is
the difference in average monthly returns between the H@laisd Low SC portfolios. “10-1 Alpha” is the difference in detor alphas
on the High SC and Low SC portfolios. Newey-West (1987) adui$-statistics are reported in parentheses.

Equal-Weighted Returns Value-Weighted Returns

Decile FSIZE ISIZE BETA BM RTV MOM IVOL FSIZE ISIZE BETA BM RTV MOM IVOL

Low IC 1.10 1.12 1.15 112 114 1.07 1.15 1.53 1.54 1.29 1.27 1.43 1.37 1.42

2 1.17 1.19 1.14 1.14 122 1.24 1.08 1.60 1.59 1.36 138 1.35 1.42 1.34
1.23 1.12 1.15 1.22 1.19 1.15 1.15 1.75 1.57 141 1.41 1.49 1.42 1.37
1.20 1.19 1.23 1.14 1.5 1.11 118 1.61 1.47 1.40 1.32 1.37 1.37 151
1.12 1.23 1.13 1.21 1.20 1.24 1.21 1.53 1.77 1.35 1.38 1.46 1.41 1.59
1.04 1.19 1.21 1.16 1.19 1.16 1.36 1.34 1.58 1.42 1.38 1.43 1.38 1.58
1.15 1.12 1.16 1.15 1.22 1.17 0.95 1.67 1.58 1.46 143 151 1.38 1.29
1.29 1.25 1.26 1.20 112 1.19 1.36 1.61 1.74 1.43 146 142 1.47 1.68

9 1.14 1.12 1.15 1.17 1.25 1.22 1.21 1.59 1.52 1.30 1.37 1.42 1.50 1.52
High IC 1.45 1.47 1.46 1.45 1.30 1.42 1.40 1.68 1.69 1.57 1.47 1.53 1.48 151

10-1Return 035 036 031 034 016 035 025014 015 027 020 009 011 0.09
(3.16) (2.99) (2.60) (2.85) (1.42) (3.37) (2.11)(1.36) (1.26) (2.41) (1.82) (0.92) (1.03) (0.65)
10-1 Alpha 045 045 034 044 027 038 034021 024 030 024 021 013 018
(3.41) (3.11) (259) (3.21) (2.24) (3.51) (2.67)(1.85) (1.62) (2.38) (2.07) (1.90) (1.12) (1.38)
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Table 2.12: Industry-level cross-sectional return regjoess. Each month from January 1964 to
December 2015 | run an industry-level cross-section regyasof the return in that month on
subsets of lagged predictor variables including senst@rerality (SC), influential centrality (IC),
FSIZE, ISIZE, BETA, BM, RTV, MOM, and IVOL. Centrality measuré&SC and IC) are estimated
every year from January 1963 to December 2014. Industrynetare calculated by the equal-
weighted returns of stocks belong to the industry. For exantpe industry return of each month
in 2001 are regressed on the the lagged predictor variasiiesated with the sample from January
2000 to December 2000. In each row, the table reports thedamies averages of the cross-

sectional regression slope coefficients and their assathewey-West (1987) adjusted t-statistics
(in parentheses).

SC IC BETA FSIZE ISIZE BM RTV MOM IVOL

0.82
(2.05)
0.69
(1.70)
0.88 048 047 052 091 050 0.66 0.04
(2.14) (1.41) (1.02) (-1.30) (2.18) (1.32) (2.57) (0.06)

079 049 047 -052 090 050 0.63 0.13
(1.95) (1.43) (1.02) (-1.3) (2.18) (1.32) (2.38) (0.20)

083 062 049 -058 0.87 057 068 065 027
(2.00) (1.92) (1.02) (-1.46) (2.10) (1.52) (1.45) (2.52) (0.39)

065 045 051 -044 081 064 050

(1.52) (1.41) (1.10) (-1.09) (1.93) (2.44) (0.71)
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Table 2.13: Industry-level cross-sectional return regjoess in subperiods (1970 -2015, 1980 -
2015, 1990 - 2015 and 2000 - 2015). Each month from Januarmyain starting year (1970, 1980,
1990 and 2000) to December 2015 | run an industry-level esesion regression of the return in
that month on lagged predictor variables including seresitientrality (SC), influential centrality
(IC), FSIZE, ISIZE, BETA, BM, RTV, MOM, and IVOL. Centrality meases (SC and IC) are
estimated every year from January 1963 to December 201dstrydreturns are calculated by the
equal-weighted returns of stocks belong to the industry.eixample, the industry return of each
month in 2001 are regressed on the the lagged predictoblesiastimated with the sample from
January 2000 to December 2000. In each row, the table reph@rtsubsample time-series aver-
ages of the cross-sectional regression slope coefficiatsheeir associated Newey-West (1987)
adjusted t-statistics (in parentheses).

Subperiods  SC IC BETA FSIZE ISIZE BM RTV MOM IVOL

0890 0.68 050 -062 097 065 075 070 -0.09
(1.89) (1.87) (0.93) (-1.36) (2.05) (1.50) (1.39) (2.74)0.14)
090 070 046 -083 087 053 068 067 -0.11
(1.69) (1.75) (0.75) (-1.69) (1.70) (1.14) (1.14) (2.49)0.16)
1.24 094 081 -089 116 084 088 050 -0.29
(1.94) (1.80) (1.03) (-1.49) (1.78) (1.45) (1.12) (1.83)0.86)
1.93 096 115 -032 143 146 126 0.83 -1.13
(2.10) (1.34) (0.91) (-0.52) (1.51) (1.76) (1.11) (2.14)0.91)

1970 - 2015

1980 - 2015

1990 - 2015

2000 - 2015
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Chapter 3

Dynamic Stable GARCH Model with

Time-Dependent Talls

Abstract

Predicting volatility conditional on current observabls<rucial for financial risk management,
from trading desks to financial institutions. This papergages a new Dynamic Stable GARCH
model, which involves the use of stable distribution withéidependent tail parameters to model
and forecast tail risks in an extremely high volatility emwviment. We can differentiate extreme
risks from normal market fluctuations with this model. Asyot inference methods in high
volatility environments are unreliable, as standard ragiyl conditions may not apply or may
hold only weakly. This paper applies a Monte Carlo test infeeeprocedure to construct the
confidence interval of the tail parameter. Empirical analys the Nikkei 225 index shows that
the Dynamic Stable GARCH model provides the best in-sampl@atidf-sample one-day Value-

at-Risk fittings and forecasts at levels above 99% acrossrdiit model specifications.

3.1 Introduction

To measure and predict volatility conditional on currens@tvables is a crucial issue for financial
institutions, from the desk level to the firm level. For ingta, a reliable risk model for trading

desks has to be based on well-developed volatility modelsmRhe financial crisis in 2008, we
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learned that the risk models used by the industry may sigmifig¢ underestimate the risks we are
supposed to be dealing with. A correct risk model cannotgareus from facing occasional losses,
but it can provide management with a sense of how much riskreeegosed to. Managing
tail risk, corresponding with possible extreme events,deassary to avoid unexpected sudden
margin calls and insufficient capital reserve against l&ogses in the trading book. In discussions
of risk management issues, we are now more and more concaboed the extreme risk which
corresponds to the tail part of the underlying distributimstead of the central part.

In this paper, | propose a new type of GARCH model, whose inmawvatare driven by the
stable distributions with time dependent tail parametersjodel tail risk dynamics. The family of
stable distributions is a rich class and includes the Gang#istributions, the Cauchy distributions
and the Levy distributions as subclasses. Moreover, itetily class of distribution to which we
can apply the general central limit theorem, an appealiatufe which is of great practical use in
portfolio allocations. Even in high volatility environmigrthe non-normal stable distribution can
easily model the cases with nonexistence of the second ntomen

Two of the most important stylized facts of financial retuatadare heavy tails and volatility
clustering. Extreme events occur more often than predlzyesimple models, and they usually oc-
cur successively. The generalized autoregressive condltheteroskedasticity (GARCH) model
is the most commonly used financial econometric model to nibése stylized facts. However,
fitted standardized returns in the Normal-GARCH model areustilally found to be heavy-tailed.
A flexible heavy-tailed distribution is needed to model th&R&H innovations. In high volatil-
ity environments, the tail could be so heavy that the secoohemt of the underlying innovation
distribution does not even exist. In such cases even thiitnaal heavy-tailed distributions (e.g.,
student’s t distributions and generalized error distidng) in the existing literatufemay not be
well defined and the misspecification could lead to underegion of the tail risk.

Furthermore, the probability of extreme events is corgblly the tail parameter in my model.
Modelling the dynamics of the tail parameter is useful farriak prediction since extreme events
usually occur successively. The traditional volatility aets with a single volatility measure (i.e.,

variance) cannot differentiate the usual market fluctuati(central risk) and unusual extreme

For theoretical convenience, many empirical studies omiiia heavy-tail distribution remain assuming that the
second moment exists.
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events (tail risk). To the best of my knowledge, existingritture has not investigated the time
dependence of tail parameters in the stable GARCH framewodtuatly, our model can also
easily be extended to characterize the skewness dynamics.

The asymptotic distribution of the maximum likelihood estitor in our model is unknown, and
the difficulty of inference in the context of the stable moded long standing problem. However,
the stable distribution can be easily simulated and our ingdelly specified, and this permits
implementation of Monte Carlo simulations and Monte Carloinngs The test procedure is valid
even under a small sample size. In practice, we always onlg hdimited sample and should
avoid asymptotic inference procedure if possible. More@a®&mptotic inference methods in high
volatility environments are unreliable, as standard ragiyl conditions may not apply or may hold
only weakly. This paper applies a Monte Carlo test inferemoegxiure to construct the confidence
interval of the tail parameter.

Based on this dynamic model, | investigate the performancauofisk model by empirical
studies in the Japanese stock markets. | use the Dynamidi@uast to examine the performance
of the proposing model in modelling and predicting ValueR&k at extreme levels. | find that
our model provides the best out-of-sample prediction ferW¥aR at low quantiles, and the stable
distribution is better than the normal distribution and ttastribution in terms of in-sample VaR

fittings and out-of-sample VaR predictions at levels ab®49

3.2 Related Literature

It's often found that the standardized GARCH residuals distion are still heavy-tailed. GARCH
models with heavy tail distributions have been proposedanyiiteratures. One of the most com-
mon used heavy-tailed distribution is the student’s t dtigtion. Bollerslev (1987) first applies
student’s t distribution in GARCH model for empirical anal/$also see Baillie and Bollerslev
(1989), Beine, Laurent and Lecourt (2002) and Franses, vabaiieand Paap (2008)]. McDonald
and Newey (1988) propose the generalized student’s tlolision which includes the power ex-
ponential or Box-Tiao, normal, Laplace, and t distributiassspecial cases. Skewed generalized
student’s t distribution proposed by Theodossiou (1998) skewed extension of the generalized

t distribution. Several other skewed extension of studendfistribution have been proposed for
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financial and other applications [see for example FernaagezSteel (1998), Branco and Dey
(2001), Jones and Faddy (2003), Bauwens and Laurent (20050Aas and Haff (2006)]. The
other important class of distributions incorporated hetatyskewness properties for financial ap-
plications is the generalized error distribution (GED) @rincludes normal as a special case.
Many financial applications of the GED as well as its skew esitens have been considered in
Hsieh (1989), Nelson (1991), Theodossiou (2000), Ayebokamlibowski (2003), Christoffersen,
Dorion, Jacobs and Wang (2010), Komunjer (2007) and oth@&csallow separate parameters
to control skewness and the thickness of each tail, Zhu andeziwalsh (2009), Zhu and Gal-
braith (2011) and Zhu and Galbraith (2010) propose asynmenetponential power distribution
and asymmetric Student’s t distribution and find evidencehe usefulness of these general dis-
tributions in improving fit and prediction of downside matkisk.

Volatility dynamics in financial market is usually modellegd ARCH Engle (1982) type mod-
els and GARCH Bollerslev (1986) type models, which are maintp$ed on how to model vari-
ance dynamics. However, a single volatility measure (ariance) cannot differentiate the usual
market fluctuations (central risk) and unusual extreme tsvail risk). It's natural to extend the
(G)ARCH frameworks to model the tail risk separately in a tivaey setting. Hansen (1994) pro-
poses Autoregressive Conditional Density (ARCD) model in GAR@tework and studies the
time dependent skewness by skewed student’s t distributddter that, a substantial amount of
empirical studies have discussed econometric specifitatiomodeling time dependent skewness
and kurtosis. Harvey and Siddique (1999, 2000) use the tiondl mean and skewness to com-
pute noncentrality parameter in concentral-t distributi@ome other researches directly model
the dynamics of time dependent Skewness and kurtosis imeguessive form, see Jondeau and
Rockinger (2003), Ledén, Rubio and Serna (2005), Brooks, Burkea¥d and Persand (2005), Bali,
Mo and Tang (2008), Cheng and Hung (2011) and Lin, Changchiao aid Kao (2014). Almost
all these empirical studies assume t class distributiorte@asnderlying distribution and the sec-
ond moment exists. They find significant time dependence@fs&ss, or kurtosis, or both. But
very few people has ever investigate the time dependenea aihid skewness for the non-normal
stable distribution in the GARCH framework. Stable GARCH modihwme dependent tail and
skewness is a blank in previous studies. In this paper, Istullly the Stable GARCH model with

time-varying tail .
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Even thought student’s t class distributions and GED clastsiloition embed flexibility to
model skewness and tail, they are generally not closed wuhemation, a appealing feature which
is of great practical use in portfolio allocation; see elpganoglu, Hartz and Mittnik (2007) and
Giacometti, Bertocchi, Rachev and Fabozzi (2007). If a sunmdépendently identically distri-
bution random variables has a limiting distribution, themust be a stable distribution. In other
words, stable distribution, which includes normal as asppease, is the only class of distributions
to which the generalized central limit theorem applies. Mhrot (1963) and Fama (1965) first
apply the stable distribution to financial time series to elathconditional heavy tail property.

A main critique of the use of the non-normal stable distiifruis that it has infinite variance.
This seems to contradict empirical studies [see, for examgbls and De Vries (1991), Lore-
tan and Phillips (1994) and Pagan (1996)]. However, thesknfys are almost always based on
inference of the Hill and related tail estimators. McCulldd®97) points out this inference is
invalid and tail index estimates greater than 2 are to be agpefor stable distributions witkr
as low as 165. The misleading problem for the tail index estimates sttible distributions has
been discussed in depth by [McCulloch (1997), Mittnik, Phaland Rachev (1998a) and Weron
(2001)]. On the other hand, Mittnik, Rachev and Paolella 893it a return distribution using a
number of parametric distribution and find the stable Pandtw is a more realistic assumption,
which holds for unconditional, conditional homoskedaatid the conditional heteroskedastic dis-
tributions; Mittnik and Paolella (2003) demonstrate thieeiveness of stable GARCH in VaR.
Whether stable distribution is suitable for financial stgdie still an open question.

Estimation of stable distribution is relatively difficulinge it only has a characteristics func-
tion definition without a closed form of density function eyt for some special cases: Normal,
Cauchy and Levy. It's well known that Maximum Likelihood Esaition method is the most effi-
cient estimation method under certain conditions. Evengdghahe stable density function is not
known in closed form in general, DuMouchel (1973) shows thatnice properties\{n asymp-
totic normality and Cramer-Rao lower bounds) of maximum Ihk@bd method are still valid under
looser restrictions. Actually, maximum likelihood estitioa can be still implemented by numeri-
cal methods. Zolotarev (1966) gives the integral repregiemt of the standard stable distribution
function. Nolan (1997) provides a more convenient compantat formula for the stable den-

sity by Zolotarev’s (M) parameterization. McCulloch (1985)dies the adaptive conditional het-
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eroskedastic (ACH) model and estimates it with symmetriblstenaximum likelihood method.
Panorska, Mittnik and Rachev (1995) and Mittnik, Paolelld Bachev (2002) discuss necessary
and sufficient conditions of stationarity of stable GARCH @sses. Liu and Brorsen (1995) esti-
mate the Stable GARCH model using Zolotarev (1966)’s integadesentation formula, but they
assume the conditional stable innovations are identigadlgpendently distributed. Broda, Haas,
Krause, Paolella and Steude (2013) go further and studytdbésmixture GARCH model.

Several alternative methods, (quantile-based estimiitw€ (lloch (1986)), generalised method
of moment with a finite set (see Hansen (1982), FeuervergE¥i@Dunnough (1981a), Feuerverger
and McDunnough (1981b) and Besbeas and Morgan (2008)) ancont of moment conditions
(see Carrasco and Florens (2000), Carrasco and Florens (2062} arrasco, Chernov, Florens
and Ghysels (2007)) , the iterative Koutrouvelis regressiethod (see Koutrouvelis (1980) and
Koutrouvelis (1981)), constrained indirect inferencereation method (see Gourieroux, Mon-
fort and Renault (1993) and Garcia, Renault and Veredas (R@ht) the exact confidence sets
and goodness-of-fit methods (see Dufour and Kurz-Kim (2@1@) Beaulieu, Dufour and Kha-
laf (2014))), have been proposed to estimate the stablabdiBbn without using its likelihood

function.

3.3 Models

Extreme risk measures (e.g., VaR) are sensitive to tail patte underlying distribution. Misspec-
ification may lead to incorrect inference and incorrect¢asting. In high volatility environments,
the second moment of financial variables of interest coulddienell-defined. In this section, |
develop a stable GARCH model with time dependent tails to nreasod forecast the extreme

risks where the second moment is infinite to model such higdgiity cases.
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3.3.1 Stable Distribution

The most common used parameterization of stable distobus the one in Samoradnitsky and

Taqqu (1994) which have the characteristic functmt) with the form:

exp{—o?[t|7[1—iBsign(t)tan( )] +iut} fora #1

o(t) = E[exp(itx)] = { o |
exp{—olt|[1+iB(%)signt)In|t|] +iut} Sfora=1

whereX is the stable random variabl¥,~ S(u,o,a,B), a € (0,2] andf € (—1,1), and sigrit)
is the sign functionu is the location parameteg; is the scale parameta, is the tail parameter

andp is the skewness parameter. A standard stable random \@Ziadkes the formZ = % ~

S(0,1,a,B).

3.3.2 Model Specification

The random variable asset retumgollow stable distributiorS(u, o, at, ), whereu, ¢, a; and
B represent location, scale, tail and skewness parameteeshtperiod, t = 1,...,T. In addition,
| assume the processes are demeaped Q) and the skewness parameter is constgn&(g3).

Then the dynamic Stable GARCH model could take the general:form

r = iz (3.1)

z~30,1a,pB) (3.2)

Ot =9o(Z-1,2-2,-,%—ps> Ot—1,0t—2, -+, Ot—qy) (3.3)
Ot =0a(Z-1,22,-Z—pg, A-1,0t—2,.--, Ot qq) (3.4)

wheregy andg, are deterministic functions which govern the scale anddhelynamics respec-
tively. They are the functions of the past stable innovatiaith lagsp, and the past parameter
values with lagsgy (y = o, a). In high volatility environment, the tail parametey could be
smaller than 2.

For traditional GARCH models with time-varying moments, inationsz follow generalized t

type distributions, in whictE(z)? < «. Here,z ~ S(0,1, at, B) and in generalE (z)? = « except
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for a; = 2. In the stable GARCH models proposed by Liu and Brorsen (1988)tail and the
skewness parameter are assumed to be conataaty andf = 3. In such casez d S(0,1,a,B).
The volatility dynamics are accounted entirely by the theetdependent scale parameterScale
parameter is a well known measure to describe the centrabhdpof a distribution. It's most
common to model variance to study volatility dynamics asaatrall the GARCH type models
do so. However, variance (or scale parameter) is just a ppbxylatility, not the volatility itself.
Variance is a good index to measure the spread of a diswibtdr its central part, but itis relatively
insensitive to tail changes. We are used to taking variamicec@le parameter) as volatility measure
since the volatility of normal distributions is fully detemed by its second moment. For stable
distributions, volatility is characterized by the scalegrmaetero, the tail parametea and the
skewness paramet@. The study of the tail parameten, is at least as important as the scale
parameterg, to model the tail risks. It helps to better capture the dyicamof extreme movements,
which is crucial for prediction of the tail risk conditionah current observables. In our model,
the tail parameter can also be a general function of the pastations and their respective lagged
values. The innovationg;, are no longer independent and identically distributed.vwald like

to model the tail dynamicsx) to model and predict the extreme risks.

There is usually a trade-off between in sample fitting anddasting precision. Note that the
purpose to develop this model is for better modelling andipting the tail risk. The desired model
specification for the dynamic Stable GARCH model should be Erepough while allowing to
characterize standard stylized facts of financial data dsas¢he tail dynamics. In this paper, the

model specification takes the following functional form:

r = Gz, t=1,....T (3.5)
z~30,1a,pB) (3.6)

Ot = bo+ by -1 — H|+Da(r—1— 1) + b3t —1 (3.7)
ay = Z_Tm[%arctar(&t) +1]+m (3.8)

Gt = Co+Cp|z—1|+Coll_1 (3.9)

The scale parametex keeps the asymmetric power 1 GARCH dynamics. The domain of the
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tail parameten; is in (m,2), whemm s a constant in (1,2) given by econometricians. The choice
of mis necessarily constrained by the regularity conditiossused in Panorska et al. (1995) and
Mittnik et al. (2002) for the special case of = 0. In this paper, | seh= 1.6 based on some pre-
liminary simulation studie$. It's small enough to allow heavy tails and big enough to gotea

the stationarity of the underlying GARCH procesgsis the unrestricted tail parameter and it could
be unbounded in general for computation convenience. foanation between restricted param-
eters and the unrestricted parameters are monotone aridumrg mappings as in equation(3.8).

| let the skewness paramef@ibe a constant in (-1,1). Of course, it's easy to extgrtd be time-
varying asa as well. My model nests the Normal-GARCH modej = +,c; = 0,¢c, = 0) and

the Stable-GARCH modét; = 0,c, = 0).

Note that the conditional volatility in this model is deten@d by two parameters, the scale
parameteio; and the tail parametear;, by captures the leverage effect a(im, co) captures the
volatility clustering effect.

The fixed and unknown parameteiis= (b, b1, by, bs, co, €1, C2, B) € ©. The whole parameter
space iD. Given 0, the data generating process of the dynamic Stable GARCHIsdater-

mined, then we can easily compute and predict the tail risklbgte Carlo simulation method.

3.4 Estimation

The main difficulty to estimate stable distribution is thekaf closed form of density function.
Several alternative methotleave been proposed to estimate the stable distributioroutithsing
its likelihood function. These methods are good enoughtimase the four parameters of a stable
distribution but none of them can be easily extended to @sérthe a dynamic model with de-
pendent stable innovations. For instance, it's very diffitm derive a closed form expression of

the characteristic function for the model specification of mterest; the slackness restriction for

2] simulate processes with different given a range of scale dynamic parameters around the vafug®se
documented in literature.

3Quantile-based estimator (McCulloch (1986)), generdlisethod of moment with a finite (see Hansen (1982),
Feuerverger and McDunnough (1981a), Feuerverger and Moiugh (1981b) and Besbeas and Morgan (2008)) or
continuum moment conditions (see Carrasco and Floren9j2@arrasco and Florens (2002) and Carrasco et al.
(2007)) , the iterative Koutrouvelis regression methoa (seutrouvelis (1980) and Koutrouvelis (1981)), constealin
indirect inference estimation method (see Gourieroux.€t1893) and Garcia et al. (2011)) and the exact confidence
sets and goodness-of-fit methods (see Dufour and Kurz-KdthQRand Beaulieu et al. (2014))
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constrained indirect inference in Garcia et al. (2011) wdutcome very complicated because |
introduce time dependent tail in this paper. Capturing theadyics of the tail parameter in the con-
ditional distribution is very difficult by these methods lsifairly easy once we have conditional
density for stable distribution. Actually, it’s still fedde to compute the density value of the stable
distribution with numerical methods. Nolan (1997) appties (M) parameterization of Zolotarev
(1986) and derives numerical formulas for the computatidh@stable density. The performances
of this numerical MLE method for stable distribution havebexamined by Nolan (1997), Nolan
(2001) and Calzolari, Halbleib and Parrini (2014). The cistin of this numerical method is about
its accuracy. The density function only has a integral esgioa and thus it's computationally in-
tensive to make it accurate. In addition, the numericalogttion routine searching the optimum
point over the whole parameter space for a large sample sidd be even more time consuming.
However, these difficulties will be partially overcome instlsection to make the numerical MLE

method be a suitable candidate to estimate the complicgteshaic model.

3.4.1 Numerical Density Computation for Stable Distribution and Simub-

tion Method for Stable Distribution

The main difficulty to apply MLE method to stable distributics its lack of closed expression
of density function. Nolan (1997) provides computationainiulas for the stable density by
Zolotarev’s (M) parameterization. A detailed discussibowt different parameterizations of stable
distribution and a simple relation between the stableiligion with parameterization as described
above and the one with Zolotarev’s (M) parameterization lmariound in Nolan (2015). In this
paper, our stable innovations follow the parameterizatiddamoradnitsky and Tagqu (1994).

For a standard stable random variable under M parametenzat- S(0,1, a, 3;0), its density

function is defined a$z(z a,3). Following Nolan (1997), define

{=¢(a,p)=—ptan’ (3.10)
w=ma,p)= %arctar{ﬁtann—;) (3.11)

131



V(9:a,8) = (cosag) "1 (%) Teiet oY e

then whero € (1,2) the standardized stable density has the following calicud@brmula,

ﬂga—Tf?%V((P;G,B)eXP<—(Z— Z)ﬁV(QD;a,BD forz>¢

1
fz(za,B) = % forz=1¢
fz(—za,—pB) Jforz< C.

The stable random variable under the parameterization mo&adnitsky and Taqqu (1994)
r ~S(u,o,a,B;1) has the density

f\(ri,0,0.8) = Tz (%—Btar("—z"xa,ﬁ) (3.13)

Even though computing density for stable distribution mayalchallenging task, simulating
stable distribution is relatively much easier. Simulatdstable distribution formulas can be found
in Chambers, Mallows and Stuck (1976) and Weron (1996). Basdtemm, we can simulate the

stable random variable under the parameterization in Sauingsky and Taqqu (1994).

3.4.2 Maximum Likelihood Estimation Method

Pt—Pt—1
pt—1 °

We would like to model the conditional distribution of thelglaeturns. The maximum likelihood

Let’s assume that we observe daily prices, pe, po, .... The daily return is defined as=

estimator is given as

" 1T
QTIVILE — argerga#t;m fr(re|re—1,re—2,...,r1; 0). (3.14)

3.4.3 Confidence Interval

The asymptotic distribution of the maximum likelihood esditor in our model is basically un-
known. Moreover, asymptotic inference methods are urbigien high volatility environment, for

standard regularity conditions may not apply or may holgyeveakly. In this section, | describe a
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Monte Carlo procedure to construct confidence interval fergarameters of interest.

Once the unknown parameter is fixed and a test statistic,hwkia function of data, can be
generated by Monte Carlo simulation method. An exact testas this idea is called Monte
Carlo test method. Inverting the test we can obtain an exaditdence set for unknown parameter
at arbitrary levels in finite sample.

Let S= S(Y1,...,Yr) be a continuous test statistic for testing an hypothkEgiswith critical
region of the formS > c, then the test has level if P(S > ¢) < a, whereS is the test statistic
based on the observed data. Suppose we can generate byteimhI&ad replications ofSunder
Ho, S, ..., SN If N is chosen so that (N + 1) is an integer, undéty, P[ZiT:llﬁlS+Jfl'S°)+l <a]=a.
Let p(x) = Z'N:lll\(l;jx”l then the test which rejectdy whenp(S) < a has levela exactly. We
can always control the size of test by picking the suitableiper of simulation replicationgyl.
The validity of this inference approach is independent ftbie sample siz&, thus it's a finite
sample method.

Suppose we have a test for hypothadig 6p) : 8 = 6y with level a, 6 € ©, where® is a
fixed parameter space. By the definition of test level, we RixgectHo(60)|0 = 6] < a. Let
Cq ={6p € ©: cannotrejecHy(6)}. P[0 €Cy]=1—P[0 ¢ Cy] >1—0a. HenceCy is the

confidence set of with level 1— a.

3.5 Empirical Analysis

In this section, | use the Nikkei 225 returns series to ingast the performance of my risk models,
and compare with the traditional GARCH models with the Normstrdbution and the T distribu-
tion. Specially, | will focus on the tail part.

| collect the daily adjusted closed pricgs X of the Nikkei 225 from 04/01/1984 - 07/03/2017

from Yahoo Finance. Daily returns are calculated;as % and also demeaned.

4For those who want to know more about the Monte Carlo test easttDufour (2006) provides a comprehensive
discussion.
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3.5.1 Tail Parameter

In this section, | study the thickness of tails in distriloums of returns and return innovations.
Specifically, I fit the returns processes) @nd estimated innovations processe%(%) using the

stable distribution and construct the confidence intervbtheir respective tail parameters:

e ri. Suppose; ~ S(a, 3, U, o), then following Beaulieu et al. (2014) = r[r7‘5r[5[% does not

depend oru ando, wherer x| refers to thexth quantile ofr.

e 211, whereZy; = ry/01; and 0y is estimated by the asymmetric power 1 GARCH model
with iid normal innovationsry = giz, ot = bo+ by |ri—1 — | +ba(ri—1— ) +bsoi_1, 2 ~
N(0,1)]. If this model is true, them ~ S(2,0,0,/2).

e Zx, wherezy = r;/0x and Gy is estimated by the asymmetric power 1 GARCH model
with iid stable innovationsrf = iz, ot = bo+ by |ri—1— H| +ba(ri—1— ) +b36i-1, % ~
S(a,B,0,1)]. If this model is true, thez "~ S(a, 3,0,1).

In order to construct confidence intervals for the tail paetars ofri, Z;; andZy, | consider

% y = rt, 211, Zx, Wherey[x| refer to thexth quantile ofy” |

construct confidence intervals using the following Montel@€#ast inference procedure:

quantile-base criterionp =

1. Fix (a,B) to be(ao, Bo)-
2. Draw 999 iid samples of siZE from a stable distribution imposing step 1.

3. For each sample drawn, construct the quantiles whichaappehe formulas forp; these

yield 999 realizations of the measures under consideration
4. Then average across the 999 simulated valgéad, Bo),i = 1,...,999] to yield (E(ao,Bo).

5. Compute 1,000 test statistige ao, Bo) = |@(ao, Bo) — (0o, Bo)l, i ,1,...,999, where
@(ao0, Bo) = @.

6. Reject(ao, Bo) if (a0, Bo) > P[95], where@[95] is the 95th quantile of @ (ao, Bo),i =
0,...,999}.
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7. Repeat steps 1-6 and consider all valuegef o) € (1,6,2) x (—1,1), then the 95% con-
fidence interval of a, B) is all the(ao, Bo) that cannot be rejecte@osos(ar, B) = { (a0, Bo) :

(ao, Bo) cannot be rejected by step.6

8. The 95% confidence interval af Coso4(a ) = { ap : there existgB such that ag, Bo) € Coses(a,B)}.

Using the procedure described above, Table 3.1 reportsS%e c®nfidence intervals of the

tail parameters off;, Z;; andZy with fitting in iid stable distributions. Not surprisinglthe return

distributionr; shows heavy tail, whose tail parameter's 95% confidencevialtés [1.40,1.52].

GARCH models can in part explain the heavy tails in uncondaioeturn distribution. Conditional

on estimated scale parameters and assuming innovatios teltow the iid normal distribution and

iid stable distribution, the 95% confidence interval of thg parameters of the distributions of the

estimated innovations;;”and Zy are[1.68,1.80 and[1.69,1.82] respectively. Yet, note that the

tail parameters are statistically smaller than 2, the egBohinnovations still exhibit strong heavy

tail pattern. General volatility clustering may be well netidd by conditional scales models, but

the dynamics of extreme events still lacks an appropriaptaeation, and this is crucial for risk

management conditional on current observables.

Table 3.1: Confidence Intervals

NIKKEI 225

e [1.41,1.54]
211 [1.68, 1.80]
2% [1.69,1.82]

3.5.2 In-Sample VaR Estimation

| use the Dynamic Quantile test to examine the performandbeoproposed model in modelling

and predicting Value-at-Risk at extreme levels. The Dynauantile test is a joint test of uncon-

ditional coverage and conditional independence.l{ kg the hitting function

1 if —rr<VaR,
0 ,if —ry>VaR,.

It =
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ly = O if the loss—r; exceeds the given level that is measured/lafR; andl; = 1 if the loss—r¢

is under the reserved levébR;, whereVaR, is the g quantile of the loss functicar;. The large
quantile levelg > 0.95 is of interest. If our risk model can correctly charaaerihe underlying
tail risks, thenl{ is a martingale process, which implies &jl/) = 0, 2)I{ is uncorrelated with
variables included in the past information set, wHere I; — g. The joint test can be done using the
artificial regressio{ = XB-+ & whereX is aT x k matrix whose first column is a column of ones,
and the remaining columns are additional explanatory kg Some risk models fail as they
predict clustering of exceeding to tM@Rlevel while they satisfy the unconditional requirement.
| include five lags ofl{, currentVaRand four lags oivaR Under the null,B = 019«1, the test
statisticDQ = '3?1(—2((5‘ ~ x%(12), whereB is the OLS estimate dB. Specifically, | check the tail
parts in distributionsq = 0.01,0075 0.005,0.0025 0.001.

Table 3.2 provides the in-sampl2Q test statistics for the four competing models: 1) the
GARCH model with iid Normal innovations (NGARCH), 2) the GARCH mobdasth iid T in-
novations (TGARCH), 3) the GARCH model with iid Stable innovasp and 4) the GARCH
model with Stable innovations with time-dependent taigpaeters (DSGARCH).

As expected, the NGARCH model is always significantly rejectddavy-tailed models pro-
vide better in-sample fit in the tails. Since the SGARCH modeésted by the DSGARCH model,
the DSGARCH model is always superior to the SGARCH model in terhfdtimg at all quan-
tiles. Forg = 0.00750.005, the SGARCH model is rejected while DSGARCH model cannot be
rejected. An important observation is that both TGARCH and BGHA models cannot fit these
small quantiles very well and in contrast, the DSGARCH modeVl/jgles a very good in-sample
fit to the low quantiles. It implies the usefulness of applytime-dependent tail parameters in
modelling processes. However, the better fit in sample magxpkained by the fact that there are
more parameters. We need to conduct out-of-sample anatykisther examine the performance

of our model.

3.5.3 Out-of-Sample VaR Forecasting

A precise estimation of time-dependent tails requiresslaample to ensure extreme events occur.

The Dynamic Quantile test also requires large sample as pecéxo observe certain extreme re-
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Table 3.2: In-Sampel DQ

q NGARCH TGARCH SGARCH DSGARCH

1% 285* 32.3" 23.3" 216
0.75% 337 26.8" 22.5 15.6
0.5% 434* 24.47 189 11.8
0.25% 640" 26.3" 12.7 5.8
0.1% 1148* 4.7 5.7 3.9

x Denote significance at the 5% level.
xx Denote significance at the 1% level.

turns would exceed VaR at certain levels. In this sectiorahgne the out-of-sample performance
of the four competing models in VaR prediction. In Table 3.8se the daily observations from
01/01/1984 - 31/12/1998 to estimate the models and use timagsd coefficients to predict the
daily VaRs from 01/01/1999 - 07/03/2017. This strategy eestinat the size of the training set is
approximately equal to the size of the test set, and the sizéem are as large as possible.
Table 3.3 shows that the NGARCH model is always rejected agaicge it fails to model
the heavy-tail property with the standard normal distiiiut The TGARCH model cannot well
predict the VaR at low quantiles (it is rejectedogt 0.005 0.0025). In contrast, the SGARCH
model and the DSGARCH model can well predict the VaR at low dleanfthey are not rejected
atg = 0.005,0.00250.001), but they cannot well predict the VaR at relative highmtiles (they
are rejected af = 0.01,0.0075). Atq= 0.0075, the SGARCH is rejected at the significance level
of 1% while the DSGARCH is rejected at the significance level @f. 50Overall, the dynamic
Stable GARCH proposed in this paper provides the best outtopte prediction for the VaR at
low quantiles, and the stable distribution is better thamtbrmal distribution and the t-distribution

in terms of in-sample VaR fittings and out-of-sample VaR migahs.

Table 3.3: Out-of-Sampel DQ

q NGARCH TGARCH SGARCH DSGARCH

1% 87.2** 19.6 360** 40.2**
0.75% 844** 180 252" 22.3°
0.5% 897 30.7* 17.8 165
0.25% 1171 60.1* 6.0 4.5
0.1% 1312* 1.2 2.9 2.9

x Denote significance at the 5% level.
xx Denote significance at the 1% level.
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3.6 Conclusion

Many financial econometric models are unable to measuredtyrthe very heavy-tail return
distributions that are used to model high volatility enwinzents. In this paper, | propose a dynamic
stable GARCH model with dynamic tail parameters to measurdaedast extreme risks. Using
this model, we can differentiate the tail risk dynamics franrmal market fluctuations. Using
a Monte Carlo test inference method, | construct confidentvals for the tail parameters of
returns and estimated innovations and find these distoibwgkhibit strong heavy-tail property.
In terms of one-day VaR modelling at low quantilgs= 0.01,00750.0050.00250.001, | find
our dynamic Stable GARCH model provides the best in-sampladitaut-of-sample forecasting
across different model specifications, and our model per$owell in capturing both the rate of

occurrence and the extent of extreme events in the Japatoekensarkets.
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Appendix A

Proof

We apply an assumptions set that is similar to the one usedngdai and Brownlees (2014).
The proofs of the Proposition 1.4.6 and the Proposition71cén thus follow their results. The
proof of Theorem 1.4.8 is based on Proposition 1.4.6 andd3ibpn 1.4.7.

A.1 Assumptions

1. The N-dimensional random vector proc&s$) is non-deterministic, has zero mean, and is

covariance stationary. Moreover,

(@) here exist constankd; andM; such that for eacN, 0 < M1 < tmin(Mx) < tUmax(Fx) <
M2 < oo, wherel x is the covariance matrix of andpmin(-) andpmax(-) are the small-
est and the largest eigenvalues operators respectively.

(b) there exists constantdz(w) andMy(w) such that, for eacN and for anyw € [—m, 1],
we have 0< M3(w) < tmin(Sx(w)) < Umax(Sx(w)) < Ma(w) < o, wheresy (w) is the
spectral density matrix of (1.3).

(c) definef =sup{c: Y h°sup;[E[X(t)iX(t —h);][}, thenf > 0.

(d) the process has three representation forms (1.3),dhdH1.5) as stated in Assumption

1.4.1.

2. There exist constants > 0 andc, > 0 such thalN = O(T%) andp= O(T%). 8 > %. The

dimension of the two partied/ andY of analysisym andm, is fixed.
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3. (a) The set of nonzero entriesan, <7, hatsqﬁifi elements, anq%{i satisfies the following

conditions:

o _ T A o A T Of; logT _
o =0y ). s =0(0).Jm 2y =T o () ana o -

O(1)fori=1,...,N.

(b) The set of nonzero entries i, o, hasq%_elements, anq%—satisfies the following

conditions:

a /T At o )\T A/ q{“logT At o _
qTi —0( W)’ T qTi ||m IogT = l T andTl c1 qTi -

O(1)fori=1,...N—my.

4. (a) For alli=1,...,N, there exists a sequence of positive real numt{e{%} such that

|aij| > sZ and Jlim

= oo for all ajj € 7.

TT \Y% qu _
(b) For alli = 1,...,N —my, there exists a sequence of positive real numbsgs} such
that\or.1|>s$7and I|m St = oo for all af; c .

oz

5. (a) Foreach=1,..,N, |ah559- ajj| = Op(T~?) with 6 € |

3,3]foranyj=1,...,N.
(b) Foreach =1,...,N, ]a%ﬁsso aij| = Op(T~9) with 6 € [£, 1] forany j =1,...,N.

6. (a) The set of nonzero entriespt, 2,,, hasq’T@u elements, anq;-@u satisfies the following

conditions:

2u
2 _ T\ r. /o2 _ /T GrologT _ (v
QTU_O<\/W)'T\/un—O(l)’-llmoT\/W_ooand\/TT_O T

(b) The set of nonzero entriesgY, 2, hasq}% elements, anq;% satisfies the following

conditions:

2y
2y _ /[ T /o2 _ Vr /T /9" logT 'OQT ﬁ
qT _0< IogT)’ T qT “m logT = and T

7. (a) For aIIpIJ € 2y, there exists a sequence of positive real numl{e}”@} such that

|p,11>§ and I"Dow\ﬁ

(b) For all pi‘f € 9y, there exists a sequence of positive real numk{efs”} such that

— 00,

o] > st and I|m

8. (a) LetD{ be a=—=— ( Y % 1 vector such that it has generic compom#nt_ A /%%Gn and
1l
let M'p = E[(D} )’Dt], then there exists a constavit, < 1 such that for anyjj € 2,
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|rD|jQ (P”)[FBQUQU(P“)]—lsigf(P,“QU))\ < MU’WhererDI]Sq(p ) ~ ody, 0dtsq|dtu =pjj Gisq=PSy"

Stii
let 'p = E[(Dy)'Dy], then there exists a constavit, < 1 such that for any}| € 2,

‘rgijggv(PV)[rg,@\,gv(ﬁ)v)]_lsign(Pr@V))‘ < Mu,whereI'D,JSq(p )= aqy, ddtsq|dtlj =p! d%=pL"

(b) LetDy be aw x 1 vector such that it has generic componﬁ;‘nt: \/ = ST g v and

9. (a) Forany >0, there exists a constatsuch that foiT large enough, we ha\Fée(lrrI]gzl( ISt — S| < K-
1—-0O(T~9).

(b) Foranyd > 0, there exists a constaltsuch that foil large enough, we ha@e(lmgzl( ISt — S| < K-
1-0(T79%).

A.2 Proof of the Proposition 1.4.6

Proof. Under assumption 5a, the weighted penaky; = Wg%ggq in (1.15) satisfies the condition
Tij

1 for the pre-estimator in Barigozzi and Brownlees (2014). ifheder assumptions 1, 2, 3a, 4a

and 5a, using the result in the Theorem 1 in Barigozzi and Brees(2014), we have

1. for T large enough and for any > 0, ati = 0 for a; gf{c with at least probability -
O(T %), wheredr; is defined in (1.15), and

2. for T large enough and for any > 0, there exist a constant, such that||aTi — ai||, <

KuT /g with at least probability - O(T ~9).

From assumption 3a, we knoﬁﬁu /qTI ). Thus we have Proléfrij =0 if ajj € 42% }—1
andéri — a; fori = 1,...,N. Note also that ve(@rl,...,aN) = veq[A},AD .. Af]"), and by the

Lemma 2 in Barigozzi and Brownlees (2014) the truncated H)@;—AKHOO = 0(1). Therefore,
AL Pafork=1,...p.

Similarly, for the expanded restricted process, under ssmmptions 1, 2, 3b, 4b and 5b,
we have Probr{YTij =0if ajj € yfi_c} — 1, o7 P, aj fori=1,...,N and thusALka P, Kff for
k=1,..0p. ]
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A.3 Proof of the Proposition 1.4.7

Proof. For thep{ considered in (1.21), under the assumptions 1, 2, 3a, 4&a5da, 8a and 9a,

using the result in Theorem 2 in Barigozzi and Brownlees (204:é)have

1. for T large enough and for any > 0, f)%ij =0 for pi‘f € 95 with at least probability 1-
O(T %), and

2. for T large enough and for any > 0, there exists a constarg such that|pf — p"||, <

g7, or equivalently||St — || < ko¥F g7 with at least probability - O(T %)

For assumptlon 6a, we kno@\/@ ). Then we have Prolglf;; = 0iif pjj € 9251 —1
andpy; 2, pij fori,j=1,...,N. Therefore, we also hava! L5 = ot

Similarly, for thepy considered in (1.22), under the assumptions 1, 2, 3b, 4Kpb7b, 8b
and 9b, we have Prob{}’” =0if pf € 251 —1 andpy;; L, pjj fori,j=1,...N. Therefore,
we also haveés! P55 = pave O

A.4 Proof of the Theorem 1.4.8

Proof. Under the assumptions 1, 2, 3a, 3b, 4a, 4b, 5a, 5b, 6a, 6bbh,/8a,/8b, 9a, and 9b, which

have been used in Proposition 1.4.6 and 1.4.7, and by thepegtions, we have the consistent

estimatorsAP,, AR, &1, & for A, AY, S, S respectively.
Note that from the Remark 1.4.2 and from the Remark 1.4.4, we hav

1. The covariance matrix of the forecast error at horiador the unrestricted model is
h—1
ZX(t+h)|7 ()] = Xod’qzud’ép (A1)
q:

wheregq =5, Acdq_k andgo = In.

2. The covariance matrix of the forecast error at horiador the restricted model is

SXo(t + W) Zow(t)] = 5 faZedy, (A.2)
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wheredq = S 1_, AcPq k anddo = In_m

3. The forecast error covarianceX¥, without its past information, at horizdnis
h—1
XY+ Fw )] = J T @i | B, (A3)
gq=0

wheregy =31 | Al @1 AY = A2, @ = IN, J3= [Imyscmy Oy (N—my) Iy xN-
4' Zg = JZZVJé and'A_\k = (JZ'A_\I((D)/’ WhereJZ = [O(N—ml)xmlv I(N—ml)x(N—ml)](N—ml)xN
AsA?, 2 A and (812 (91 =5, ¢ is iteratively defined agq = 7, AP, dq «
forq=1,...,h—1, thendq P, ¢q and thus
SIX(t+h).Z w(t)] —= Z[X(t+h)|.Z_w(t)], (A.4)

whereZ (X (t+h)[Z_w(t)] := 3 h-gdq(S}) 1dg anddo = In.
AsAP, P AP and(§r)-1 -2 (V)1 =5, @ is iteratively defined ag, = 59, (AP, J2) Gy«
forg=1,...,.h—1, then(hq P, = zﬁzl(,&f‘]z)%_k, and thus

SwiXW(t +h) | Fw(t)] = swXW(t + h)[.F_w(t)], (A.5)

whereSy [XW (t +h)[Z_w(t)] == I3 <zg;é(ﬁl(§‘{)*l(ﬁé> Jyandg = In.

ASAL'Fr)k LA (&) B () =5, 2 = 15,3y andA, = (RAY), thenZ, - 5, and
(JAR ) s (BAPY, whereS; = Jo(S) 15, Also §q is iteratively defined agy =59, (AR ) $q_i
thendyq —— dq = 5, Acdq_k and thus

E[Xo(t+h)|.Z-w ()] == Z[Xo(t+h)[Z_w(t)], (A.6)

whereZ [Xo(t +h)[. 7 w(t)] i= 05 P2 §f andPo = In—m.

Finally, we have
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en o [ det3oEXott +h) 7w (1))
Ty =N e S ) 2 )13}

I e LA
defQ[X (¢ h)|7 (D)%}

and
o det{Sw[XW(t + h)[Z_w(t)]}
TWWE T det{ S [X (t+ h)[.Z (1)] 3]}
P det{Zw[XV(t+h)|.Z7 w(t)]}}
- [det{le[X(t+h)| Z )]
Therefore,

é?wv—p’CL(XW e XY“)»

Chlyw — CL (XY - XV,
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Appendix B

S&P 100 components (selected)

Ticker Company Sector Ticker Company Sector

AAPL Apple Inc. Consumer Goods  HPQ Hewlett-Packard Co Teldgyo

ABT Abbott Laboratories Healthcare IBM Intl Business Maués Corp Technology

ACN Accenture plc Technology INTC Intel Corp Technology

AGN Allergan plc Healthcare JINJ Johnson & Johnson Healéhcar

AlIG American Intl Group Inc Financial JPM JP Morgan Chase & Co inaRcial

ALL Allstate Corp Financial KO Coca-Cola Co Consumer Goods
AMGN Amgen Inc Healthcare LLY Lilly Eli & Co Healthcare

AMZN Amazon.com Inc Services LMT Lockheed Martin Industi@bods
APC Anadarko Petroleum Corp Basic Materials LOW Lowe’s Gus | Services

AXP American Express Co Financial MCD McDonald’s Corp Segsic

BA Boeing Co Industrial Goods ~ MDT Medtronic plc Healthcare

BAC Bank of America Corp Financial MET Metlife Inc Financial

BAX Baxter Intl Inc Healthcare MMM 3M Co Industrial Goods
BIIB Biogen Inc Healthcare MO Altria Group Inc Consumer Goods
BK The Bank of New York Mellon Corp Financial MON Monsanto Co. Basic Materials
BMY Bristol-Myers Squibb Healthcare MRK Merck & Co Inc Helattare

C Citigroup Inc Financial MS Morgan Stanley Financial

CAT Caterpillar Inc Industrial Goods MSFT Microsoft Corp chmology

CELG Celgene Corp Healthcare NKE NIKE Inc B Consumer Goods
CL Colgate-Palmolive Co Consumer Goods NSC Norfolk SouthempC Services

CMCSA  Comcast Corp Services ORCL Oracle Corp Technology
COF Capital One Financial Financial OXY Occidental Petnate Basic Materials
COP ConocoPhillips Basic Materials PEP PepsiCo Inc Cons@uoeds
COST Costco Wholesale Corp Services PFE Pfizer Inc Healthcare
CSCoO Cisco Systems Inc Technology PG Procter & Gamble Consup@ss
CVS CVS Health Corporation Healthcare QCOM  QUALCOMM Inc firology

CvX Chevron Corp Basic Materials RTN Raytheon Co IndustBabds

DD E. I. du Pont de Nemours and Company  Basic Materials SBUX  b8tds Corp Services
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DIS
DOW
DVN
EBAY
EMC
EMR
EXC

FDX
FOXA
GD
GE
GILD
GS
HAL
HD
HON

Walt Disney Co

Dow Chemical

Devon Energy Corp

eBay Inc.

EMC Corp

Emerson Electric Co
Exelon Corp

Ford Motor Co

FedEx Corp

Twenty-First Century Fox, Inc
General Dynamics
General Electric Co

Gilead Sciences Inc
Goldman Sachs Group Inc
Halliburton Co

Home Depot Inc

Honeywell Intl Inc

Services

Basic Materials
Basic Materials

Services

Technology
Industrial Goods
Utilities
Consumer Goods
Services
Services
Industrial Goods
Industrial Goods
Healthcare

Financial

Basic Materials
Services

Industrial Goods

SLB
SO
SPG
T
TGT
TWX
TXN
UNH
UNP
USB
uUTXx
\%
\'/4
WBA
WFC
WMT
XOM

Schlumberger Ltd
Southern Co
Simon Property @rou
AT&T Inc
Target Corp
Time Warner Inc
Texas Instruments Inc
Unitedhealth Group Inc
Union Pacific Corp
US Bancorp
United Technols@ierp
Visa Inc
Verizon Communicatibrc
Walgreens Bootsmdianc
Wells Fargo & Co
Wal-Mart Stores
Exxon Mobil Corp

Basic Materi
Utilities
Financial
Technology
Services
vibers
Techrmlo
tHeate
Services
inaRcial
Industrial Goods
Services
Technology
Services
Fin&edc
Services

Basic Materials
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Appendix C

Variable Definitions

1. SPREAD: SPREAD is the average of daily Corwin and Schultz ZP8bid-ask spreads
estimates within a year for the firms belong to the same imdsgtecified by the first three

digits of SIC codes.
2. RTV: RTV is the average of daily Amihud (2002)’s illiqutgliestimates (RT) within a

year for the firms belong to the same industry specified by thethiree digits of SIC codes.

IRt
RTV; = ’ C.1l
= You, (C.1)

where RTV; is firmi’s illiquidity estimate on day. R is firmi’s return on day. VOLV

is firm i’s trading volume in dollars on day
3. ISIZE: ISIZE is the average of daily sum of market capraiions within a year for the firms

belong to the same industry specified by the first three difi&C codes:

ISIZEis = § MCi (C.2)

IkEl

where MG, ; is firm i’s market capitalization (stock’s price times shares auiding in

millions of dollars) on day, and firmiy belongs to industry.

4. FSIZE: FSIZE is the average of daily average of markettabpations within a year for the
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firms belong to the same industry specified by the first thrgiesdof SIC codes:

1
FSIZE: = — ) MG ¢ (C.3)
N ikzei “
where MG, ; is firm i’s market capitalization (stock’s price times shares ausing in
millions of dollars) on dayt, and firmiy belongs to industry. n; is the number of firms

belong to industry.

5. BM: Following Fama and French (1992), | compute a firm’s bomknarket ration in month
t using the market value of its equity at the end of Decembeh®fprevious year and the
book value of common equity plus balance-sheet deferregstéor the firm’s latest fiscal

year ending in prior calendar year.

1
BMit = — Z BM;, t (C.49)

i iK€l
where BMy is industryi’s book-to-market in montt. BM;, ¢ is firm iy’s book-to-market
in montht, for firm iy belongs to industry. n; is the number of firms belong to industry
i. Industry’s book-to-market in yearis the simple average of monthly industry’s book-to-

market in yeay.

6. BETA: To take into account nonsynchronous trading, | fel®choles and Williams (1977)
and Dimson (1979) and use the lag and lead of the market porte well as the current

market when estimating beta:

Rid—rfd=di+Bri(Rnd—1—rfd-1) +B2i(Rmd—rtd) + B3i(Rmd+1—rf,d+1) +&d,
(C.5)
whereR, 4 is the average return of the stocks belong to industny dayd, r¢ 4 is the risk-
free rate on dayl andRy 4 is the market return on day. | use simple OLS to estimate

equation C.5 for each industry using daily returns within ary&@he market beta of industry

i in yeary is defined asfﬁ’i = Blj + ﬁz,i +Bg,i.

7. IVOL: | use a simple CAPM model specification to estimateytbarly idiosyncratic volatil-
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ity of a firm:

Rd—rfd=ai+Bi(Rnd—rfd)+&d, (C.6)

whereg 4 is the firmi’ idiosyncratic return on dagl. The idiosyncratic volatility of firm in

yeary is defined as the standard deviation of daily OLS residuaysary:

|VOLi7t =1/ var(éi,d). (C7)

The idiosyncratic volatility of an industry in yeguis the average of the idiosyncratic volatil-

ities of the firms belong to that industry in year

. MOM: The momentum variable of firirfor every months in year+ 1 is the simple average
of firm i’ daily returns in yealy. The momentum of an industry is the simple average of the

momentums of the firms belong to that industry.
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Appendix D

Data and Code

All data and python codes related to this thesis are sharéldeo@oogle Drive with the following
URL:

https://drive.google.com/drive/folders/0B9eEne9KGIVNoSWkwM1hYNDg?usp=sharing
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